期刊文献+

基于CUDA的并行粒子群优化算法研究及实现 被引量:6

Research and Design of Parallel Particle Swarm Optimization Algorithm Based on CUDA
下载PDF
导出
摘要 应用图形处理器(GPU)来加速粒子群优化(PSO)算法并行计算时,为突出其加速性能,经常有文献以恶化CPU端PSO算法性能为代价。为了科学比较GPU-PSO算法和CPU-PSO算法的性能,提出用"有效加速比"作为算法的性能指标。文中给出的评价方法不需要CPU和GPU端粒子数相同,将GPU并行算法与最优CPU串行算法的性能作比较,以加速收敛到目标精度为准则,在统一计算设备架构(CUDA)下对多个基准测试函数进行了数值仿真实验。结果表明,在GPU上大幅增加粒子数能够加速PSO算法收敛到目标精度,与CPU-PSO相比,获得了10倍以上的"有效加速比"。 In the application of graphic processing unit (GPU) to accelerate particle swarm optimization (PSO) algorithm for parallel computing,many references worsen the performance of PSO algorithm on CPU side in order to highlight the acceleration performance. The concept of "Effective Speedup" was proposed in this paper to measure the achievement of GPU-PSO algorithm and CPU-PSO algorithm. The proposed method aims at accelerating the implementation to the target precision. The GPU parallel algorithm was compared with the best CPU serial algorithm, which does not require the same number of particles between CPU side and GPU side. Experiments based on several benchmark test functions using compute unified device architecture (CUDA) show that substantially increasing the number of particles on GPU side can significantly accelerate the accomplishment of PSO algorithm to the target precision. Compared with CPU-PSO, an "Effective Speedup" of more than 10 has been achieved.
出处 《计算机科学》 CSCD 北大核心 2014年第9期263-268,共6页 Computer Science
基金 船舶工业国防科技预研基金项目(10J3.5.2)资助
关键词 粒子群优化 并行计算 图形处理器 统一计算设备架构 Particle swarm optimization (PSO) Parallel computing Graphic processing unit (GPU) Compute unified device architecture (CUDA)
  • 相关文献

参考文献19

  • 1Kennedy J,Eberhart R. Particle swarm optimization [C]//Pro- ceedings of the IEEE International Conference on Neural Net- works. Perth,WA, 1995,4 ; 1942-1948.
  • 2Poll R, Kennedy J, Blackwell T. Particle swarm optimization: an overview [J]. Swarm Intelligence, 2007,1 (1) : 33-57.
  • 3Singhal G, Jain A, Patnaik A. Parallelization of particle swarm optimization using message passing interfaces (MPIs) [C]// IEEE World Congress on Nature & Biologically Inspired Com- puting. Coimbatore, 2009 : 67-71.
  • 4Deep K, Sharma S, Pant M. Modified parallel particle swarm op-timization for global optimization using Message Passing Inter- face [C]//2010 1EEE Fifth International Conference on Bio-In- spired Computing: Theories and Applications. Changsha, 2010: 1451-1458.
  • 5Wang 13 Z, Wu C H, et al. Parallel multi-population Particle Swarm Optimization Algorithm for the Uncapacitated Facility Location problem using OpenMP [C]//IEEE Congress on Evo- lutionary Computation. HK, 2008 : 1214-1218.
  • 6Venayagamoorthy G K, Gudise V G. Swarm intelligence for dig- ital circuits implementation on field programmable gate arrays platforms [C] //Proceedings of the IEEE Conference on Evolvable Hardware. 2004 : 83-86.
  • 7Maeda Y, Matsushita N. Simultaneous Perturbation Particle Swarm Optimization Using FPGA [C]//IEEE International Joint Conference on Neural Networks. Orlando, FL, 2007: 2695- 2700.
  • 8Veronese L,Krohling R. Swarm's flight:Accelerating the parti- cles using C-CUDA [C]//Proceedings of the IEEE Congress on Evolutionary Computation. Trondheim, 2009 : 3264-3270.
  • 9Calazan R M, Nedjah N, de Macedo Mourelle L. Parallel GPU- based implementation of high dimension Particle Swarm Optimi- zations [C]//2013 IEEE Fourth Latin American Symposium on Circuits and Systems. Cusco, 2013:1-4.
  • 10Zhou Y, Tan Y. GPU-based parallel particle swarm optimization [C]//Proceedings of the IEEE Congress on Evolutionary Com- putation. Trondheim, 2009 : 1493-1500.

二级参考文献45

  • 1张蕾,杨波.并行粒子群优化算法的设计与实现[J].通信学报,2005,26(B01):289-292. 被引量:9
  • 2李建明,万单领,迟忠先,胡祥培.一种基于GPU加速的细粒度并行粒子群算法[J].哈尔滨工业大学学报,2006,38(12):2162-2166. 被引量:8
  • 3朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 4玄光南 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 5KENNEDY J, EBERHART R. Particle Swarm optimization [ C l// Proc of IEEE International Conference on Neural Networks. 1995: 1942-1948.
  • 6TEWOLDE G S, HANNA D M, HASKELL R E. Multi-swarm paral- lel PSO: hardware implementation[ C]//Proc of IEEE Swarm Intelli- gence Symposium. 2009 : 60- 66.
  • 7NVIDIA. NVIDIA CUDA C programming guide: version 3.2 [ EB/ OL]. (2010-01). http://ww, nvidia, com/object/euda_home, html.
  • 8HARADA T. Real-time rigid body simulation on GPUs[ M]//Hubert Nguyen, GPU Gems 3. Boston: Addison-Wesley Professional, 2007 : 611-632.
  • 9SUSSMAN M, CRUTCHFIELD W, PAPAKIPOS M. Pseudorandom number generation on the GPU [ C ]//Proc of the 21st ACM SIG- GRAPH/Eurographics Symposium on Graphics Hardware. New York : ACM Press ,2006:87-94.
  • 10谢金星;邢文训.现代优化算法[M]北京:清华大学出版社,2005.

共引文献38

同被引文献35

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2Lindop J E,Treece G M,Gee A H, et al. 3D Elasto- graphy Using Freehand Ultrasound [ J ]. Ultrasound in Medicine & Biology ,2006,32(4 ) :529-545.
  • 3Shiina T,Nitta N, Sjsum E U, et al. Real Time Tissue Elasticity Imaging Using the Combined Autocorrelation Method [ J ]. Journal of Medical Ultrasonics, 2002, 29(3) :119-128.
  • 4Zhou Yongjin, Zheng Yongping. A Motion Estimation Refinement Framework for Real-time Tissue Axial Strain Estimation with Freehand Ultrasound [ J ]. 1EEE Tran- sactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010,57 ( 9 ) : 1943-1951.
  • 5Rivaz H, Boctor E, Foroughi P, et al. Ultrasound Elasto- graphy : A Dynamic Programming Approach [ J]. IEEE Transactionson Medical Imaging, 2008,27 ( 10 ) : 1373- 1377.
  • 6Zahiri A R. Salcudean S E. sound Images Using Time Motion Estimation in Ultra- Domain Cross Correlation with Prior Estimates [ J ]. IEEE Transactions on Bio- medical Engineering, 2006,53 ( 10 ) : 1990-2000.
  • 7Hoyt K, Forsberg F, Ophir J. Comparison of Shift Estimation Strategies in Spectral Elastography[ J ]. Ultra- sonics,2006,44(1 ) :99-108.
  • 8Kennedy J, Kennedy J F, Eberhart R C. Swarm Intelligence [ M ][ S. I. ] : Morgan Kaufmann, 2001.
  • 9Rivaz H, Boctor E M, Choti M A, et al. Real-time Regularized Ultrasound Elastography [ J ]. IEEE Tran- sactions on Medical Imaging, 2011,30 ( 4 ) : 928-945.
  • 10Spears W M,Green D T, Spears D F. Biases in Particle Swarm Optimization[ J]. International Journal of Swarm Intelligence Research ,2010,2 ( 1 ) :34-57.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部