期刊文献+

分层关联的多目标跟踪算法研究 被引量:4

Research on Multi-object Tracking Using Hierarchical Data Association
下载PDF
导出
摘要 检测跟踪(Tracking by detection)是近年来多目标跟踪领域的一个主要研究方向。遵循检测跟踪框架,提出一种基于分层关联的全局性的数据关联算法。首先利用目标检测器在整个视频上检测目标,得到检测响应;然后利用广义最小团图在视频片段中对检测响应进行数据关联,得到轨迹片段;最后再在整个视频中对轨迹片段进行分层关联,得到最终的轨迹。在公共数据集上的测试结果表明,该算法能够有效地对多个目标进行数据关联,具有较强的处理遮挡能力。 Tracking by detection is a main research direction in the field of multi-target tracking in recent years. We proposed a global multi-object tracking algorithm using hierarchical data association following the tracking by detection framework. We first obtained the detection response in the whole video using an object detector, and then utilized the to solve the data association problem on detection response in video clip and obtained tracklets. At last we obtained the object track by solving the association problem on traeklets in whole video using a hierarchical method. Experiments on the public datasets show the proposed method can solve data association and handle occlusion effectively.
出处 《计算机科学》 CSCD 北大核心 2014年第9期306-310,共5页 Computer Science
基金 国家自然科学基金项目(51365017) 江西省科技厅青年科学基金(20132bab211032)资助
关键词 检测 多目标跟踪 分层数据关联 广义最小团 轨迹片段 遮挡处理 Detection Muiti-object tracking Hierarchical data association Generalized minimum clique graphs Tracklet Occlusion handling
  • 相关文献

参考文献15

  • 1Benfold B,Reid I. Stable multi-target tracking in real-time sur- veillance video[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, 2011: 3457- 3464.
  • 2Roshan Zamir A, Dehghan A, Shah M. GMCP-Tracker: Global Multi-object Tracking Using Generalized Minimum Clique Graphs[C]//Computer Vision-[CCV. 2012 : 343-356.
  • 3Suard F, Rakotomamonjy A, Bensrhair A, et al. Pedestrian De- tection Using Infrared images and Histograms of Oriented Gra- dients [C] // Intelligent Vehicles Symposium, 2006. Tokyo:IEEE, 2006:206-212.
  • 4Bo Y,Chang H, Nevatia R. I.earning affinities and dependencies for multi-target tracking using a CRF model [C] //2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence,RI,2011 : 1233-1240.
  • 5Andriyenko A, Roth S, Schindler K. An analytical formulation of global occlusion reasoning for multi-target tracking[C]//2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Barcelona, 2011 : 1839-1846.
  • 6Hao J, Fels S, Little J J. A Linear Programming Approach for Multiple Object Tracking[C] ff IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR ' 07 ). Minneapo- lis, MN, 2007 : 1-8.
  • 7Berelaz J, Fleuret F, Turetken E, et al. Multiple Object Tracking Using K-Shortest Paths Optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33 ( 9 ) : 1806- 1819.
  • 8Forsyth D,Torr P, Zisserman A, etaj. Robust Object "fracking by Hier-archicaI Association of Detection Responses[M]//For- syth D, Torr P, Zisserman A. Computer Vision-[CCV 2008. Springer Berlin Heidelberg, 2008 : 788-801.
  • 9Pirsiavash H, Ramanan D, Fowlkes C C. Globally-optimal greedy algorithms for tracking a variable number of objects[C] ff 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providenee,RI,2011 : 1201-1208.
  • 10Yuan L, Chang H, Nevatia R. Learning to associate: Hybrid- Boosted multi-target tracker for crowded scene[C]//IEEE Con ference on Computer Vision and Pattern Recognition, 2009 (CVPR 2009 ). Miami, FI., 2009 : 2953-2960.

同被引文献13

  • 1武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 2KUMAR N S,SHOBHA G,BALAJI S. Key frame extraction algoL rithm for video abstraction applications in underwaler videos[C]. Underwater Technology (UT) ,2015 : 1-5.
  • 3ZHANG P, ZHOU T, ZHANG Y, et al. Real-time tracking by- learning with high-order regularization fusion for big video abmrac- tion[J]. Signal Processing,2015(15) :25-32.
  • 4ZAMIR A R, DEHGHAN A, SHAH M. Gmcp-tracker:global multi-object tracking using generalized minimum clique graphs [M]. Springer Berlin Heidelberg, 2012 : 343-356.
  • 5WEN L,LI W,YAN J,et al. Multiple target tracking based on un directed hierarchical relation hypergraph[C]. Computer Vision and Pattern Recognition (CVPR) 2014 : 1282-1289.
  • 6FELZENSZWALB P,GIRSHICK R. MCALLESTER D,et al. Oh jeer detection with discriminatively trained part based models[J]. Pattern Analysis and Machine Intelligence ( PAMI), 2010,32 ( 9 ) 1627-1645.
  • 7YANG T,LI S Z,PANan Q,et al. Real-time and accurate segmen- tation of moving objects in dynamic scene[J]. Vssn Proceedings of the Aem International Workshop on Video Surveillance -. Sensor Networ,2004 (10) : 136-143.
  • 8黄增喜,张海军,李一波,穆志纯.一种快速的自动人眼定位方法[J].计算机工程与应用,2011,47(7):183-186. 被引量:6
  • 9樊利军,魏昊,田柏林.基于改进局部方向模式特征的人脸识别算法[J].计算机应用与软件,2015,32(9):166-169. 被引量:1
  • 10李俊霞,张书敏,吴何胜.基于图像分块和特征选择的单训练样本人脸识别[J].计算机应用与软件,2015,32(9):310-313. 被引量:2

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部