期刊文献+

基于稀疏表示和词袋模型的高光谱图像分类 被引量:4

Classification of Hyperspectral Image Based on Sparse Representation and Bag of Words
下载PDF
导出
摘要 为增强高光谱图像稀疏表示分类方法中稀疏字典的表征能力并充分利用高光谱图像的光谱信息和空间信息,提出了一种新的基于稀疏表示和词袋模型的高光谱遥感图像分类方法。首先利用词袋模型算法结合高光谱遥感图像数据集生成各类别专业码本,作为字典中对应的原子构造稀疏表示字典。在计算每个像元的对应稀疏表示字典中的稀疏表示特征时,利用空间连续性约束对像元的稀疏表示系数进行空间维的约束。最后根据最小重构误差实现高光谱图像分类。高光谱遥感数据实验结果表明:所提方法能有效提高分类效果,并且其分类精度和Kappa系数都优于其他稀疏表示方法以及单独使用光谱信息的方法。 To enhance representation ability of the sparse dictionary for hyperspectral image classification using sparse representation and make full use of spectral information and spatial information of hyperspectral image, a novel hyperspectral image classification method based on sparse representation and bag of words was proposed. First, some professional dictionaries of each class are generated by bag of words algorithm based on the hyperspectral remote sensing image dataset, and the sparse representation dictionary is obtained by merging these professional dictionaries. Then, the sparse coefficient of each pixel is calculated according to the sparse representation dictionary, and the spatial continuity is used to constraint the coefficient by using the information of its neighborhoods. Finally, the classification of the objects is determined by computing the minimum reconstruction error of it on each professional dictionary. Experiments on hyperspectral remote sensing images indicate that the proposed method has better performance, a higher overall accuracy and Kappa coefficient than other sparse representation methods and the method based on spectral information respectively.
出处 《计算机科学》 CSCD 北大核心 2014年第10期113-116,共4页 Computer Science
基金 中国自然科学基金重点项目(61231016) 中国自然科学基金(61272288 61201291 61303123) 河南省科技攻关计划(142102210557) 西工大校基础研究基金(JCT20130108 JCT20130109)资助
关键词 图像处理 高光谱图像 稀疏表示 词袋模型 空间连续性 Image processing, Hyperspectral image, Sparse representation, Bag of words, Spatial continuity
  • 相关文献

参考文献3

二级参考文献33

  • 1谌德荣,陶鹏,张立燕,范宁军.基于区域特征光谱的自组织特征映射神经网络高光谱图像主成分提取方法[J].宇航学报,2007,28(6):1689-1692. 被引量:3
  • 2[2]Carlotto Mark J. Spectral shape classification of landsat thematic mapper imagery[J]. Photogrammetric Engineering & Remote Sensing, 1998, 64(9): 905-913.
  • 3[4]ZHAO Yong-Chao, TONG Qing-Xi, ZHENG Lan-Fen, et al. A Kernel Adaptive Filter(SRSSHF) and Quality; Improvement Method for Hyperspectral Image on the Base of Spectral Dimension Recognition and Spatial Dimension Smoothing According to CSAM[C], SPIE:SPIE 2nd International Symposium on Multispectral Image Processing and Pattern Recognition, 2001, 4552, 230-236
  • 4[5]ZHANG Bing, ZHANG Xia, LIU Liang-Yun, et al. Spectral unmixing and image classification supported by spatial knowledge[C]. Proceedings of SPIE, 2003: 4897: 279-283
  • 5Chan J C W and Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011.
  • 6Shahshahani B M and Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5) 1087-1095.
  • 7Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
  • 8Wright J, Ma Y, Mairal J, et al. Sparse representations for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 9Raina R, Battle A, Lee H, et al. Self-taught learning: transfer learning from unlabeled data[C]. International Conference on Machine Learning, Corvallis, 2007: 759-766.
  • 10Qiao Li-shan, Chen Song-can, and Tan Xiao-yang. Sparsity preserving projection with applications to face recognition [J] Pattern Recognition, 2010, 43(1): 331-341.

共引文献108

同被引文献36

  • 1郭仕德,马廷,林旭东.高光谱遥感及其影像空间结构特征分析[J].测绘科学,2005,30(3):35-37. 被引量:13
  • 2Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227.
  • 3Tropp J A, Wright S J.Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010,98(6):948-958.
  • 4Gao S, Tsang I, Chia L, et al. Local features are not lonelylaplacian sparse coding for image classification[C]// IEEE Conference on Computer Vision and PatternRecognition(CVPR). 2010:3555-3561.
  • 5Wang Jinjun, Yang Jianchao, Yu Kai, et al. Localityconstrained linear coding for image classification[C]// IEEE Conference on Computer Vision and PatternRecognition(CVPR). 2010:3360-3367.
  • 6Yang Jianchao, Yu Kai, Gong Yihong, et al. Linear spatial pyramid matching using sparse coding for image classification [C]// IEEE Conference on Computer Vision andPattern Recognition. 2009:1794-1801.
  • 7Short N, Hu S, Gurram P, et al. Improving crossmodal face recognition using polarimetric imaging[J]. Optics Letters, 2015,40(6):882-885.
  • 8Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[C]// Advances in Neural Information Processing Systems. 2006:801-808.
  • 9Bay H, Tuyteplaars T, van Gool L. SURF:Speeded up robust features[C]// Proceedings of the European Conference on Computer Vision. 2006:404-417.
  • 10PLAZA A, BENEDIKTSSON J A, BOARDMAN J W, et al. Recent advances in techniques for hyperspectral image processing[ J]. Re- mote Sensing of Environment, 2009, 113(1) : 110 - 122.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部