期刊文献+

基于GPU的并行化Apriori算法的设计与实现 被引量:5

Design and Implementation of Apriori on GPU
下载PDF
导出
摘要 大数据和高度并行的计算架构的时代已经来临,如何让传统的串行数据挖掘方法在当下获得更高的效率是一个值得探讨的问题。根据现代GPU大规模并行运算架构的特点(单结构多数据),对传统的串行Apriori算法进行并行化处理。使用最新的CUDA技术完成对传统串行Apriori算法中的支持度统计、候选集生成这两个计算的并行化实现,讨论了多种实现方法的差异,并提出改进方案。实验表明:改进后的并行算法使支持度统计在10000条事务的条件下效率提高16%,候选集生成在10000条事务的条件下效率提高25%。 Big data and parallel computation era have come,and it is a trend to convert serial data mine algorithm into parallel algorithm to take advantage of cheap machine. In this paper two main steps, namely support counting and candidate set generation in serial apriori algorithm, were rebuilt parallelly on CUDA architecture. Meanwhile the difference between various implements of parallel apriori was compared to find a better solution. Finally, the experiments indicate that the time of support counting and candidate set generation decreases 16% and 25% respectively on a data set containing 10000 items.
出处 《计算机科学》 CSCD 北大核心 2014年第10期238-243,共6页 Computer Science
基金 国家海洋公益性行业专项(201305026)资助
关键词 数据挖掘 关联规则 频繁模式 并行算法 Data minint, Association rules, Frequent itemset mining, Parallel agorithm
  • 相关文献

参考文献9

  • 1Agrawal R,Srikant R.Fast algorithms for mining association rules[C]∥Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94).1994:487-499.
  • 2Agrawal R,Shafer J C.Parallel mining of association rules[J].IEEE Transactions on Knowledge and Data Engineering,1996,8(6):962-969.
  • 3Shah K D,Mahajan S.Maximizing the Efficiency of ParallelApriori Algorithm[C]∥ International Conference on Advances in Recent Technologies in Communication and Computing.IEEE,2009:107-109.
  • 4Li Ning,Zeng Li,He Qing,et al.Parallel Implementation ofApriori Algorithm Based on MapReduce[C]∥Software Engineering,Artificial Intelligence,Networking and Parallel & Distributed Computing (SNPD).2012:236-241.
  • 5Shintani T,Kitsuregawa M.Hash based parallel algorithms for mining association rules[C]∥Fourth International Comperence on Parallel and Distributed Information Systems.IEEE,1996:19-30.
  • 6Cui Qing-min,Guo Xiao-bo.Research on Parallel AssociationRules Mining on GPU[C]∥Proceedings of the 2nd International Conference on Green Communications and Networks.2013:215-222.
  • 7Yang Yuan-sen,Yang Chung-ming,Hsieh T J.GPU parallelization of an object-oriented nonlinear dynamic structural analysis platform[J].Simulation Modelling Practice and Theory,2014,40:112-121.
  • 8Shan Feng,Hart John C.Parallel computing on geostatistical data using CUDA[C]∥IDEALS.2014.
  • 9Smirnov V.Parallel Integration Using OpenMP and GPU toSolve Engineering Problems[J].Applied Mechanics and Materials,2014,475:1190-1194.

同被引文献42

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 3徐计,王国胤,于洪.基于粒计算的大数据处理[J].计算机学报,2014,37(113):1-22.
  • 4Dalai N. Triggs B. Histogram of oriented gradients for humanI>tection[C]//CVPR. 2005 :886-893.
  • 5Belongie S, Malik J,Puzicha J. Shape Matching and object recog-nition Using Shape Contexts[J]. IEEE Trans, on Pattern Analy-sis and Machine Intelligence, 2002,24C4) : 509-522.
  • 6Shi J , Thomasi C. Good feature to track[C] // IEEE Conferenceon Computer Vision and pattern Recognition. 1994:593-560.
  • 7Lucas B. Kanade T. An iterative image registration techniquewith an application to stereo vision[C] //' Proceedings of the In-ternational Joint Conference on Artificial Intelligence, 1982:674-679.
  • 8Strengert M,Kraus M,Ertl T. Pyramid Methods in GPU-BasedImage Processing[C]//Proceeding of Vision. Modeling.and Vi-sualization 2006. 2006:169-176.
  • 9Dollar P, Appel R.Belongie S. F'ast Feature pyramids for objectdetection[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence,2014,36(8) : 1532-1545.
  • 10Nvidia. NVIDIA CUDA A Programming Guide version 4. 0[EB/OIJ. http://www. nvidia. com/object/cuda-cn.

引证文献5

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部