期刊文献+

基于BP神经网络的啤酒瓶口检测方法 被引量:6

Method of Beer Bottle Mouth Inspection Based on BP Neural Network
下载PDF
导出
摘要 运用BP神经网络可以实现啤酒瓶口的破损检测.首先获取啤酒瓶口图像,并进行图像处理.然后计算啤酒瓶口的周长、面积、圆形度和相对圆心距离4种特征参数,由这4种特征参数构成特征向量组.其次建立结构为4-7-1的BP神经网络模型,将特征向量组作为神经网络的输入.最后对啤酒瓶口破损情况进行训练,根据训练结果获得权值和阈值矩阵,通过逻辑转换关系获得啤酒瓶口的破损情况.经实验验证该方法具有很好的准确度和检测效率. Damage identification of beer bottles could be realized by using the BP neural network. First, beer bottle mouth images were collected and processed. Four characteristic parameters including the perimeter, area, circularity, and the relative center distance were calculated and constituted a feature vector group. Then, the BP neural network model with the 4-7-1 model was established and the feature vectors group was inputted to the neural network. Finally, beer bottle damages would be trained. The weight and threshold matrix were acquired according to the training results. Beer bottle mouth damages would be easily obtained through logic relations. The experimental results verified that this method had good accuracy and inspection efficiency.
出处 《食品科学技术学报》 CAS 2014年第4期69-74,共6页 Journal of Food Science and Technology
基金 北京市属高等学校人才强教计划资助项目(PHR20110876)
关键词 BP神经网络 破损检测 特征向量 瓶口 BP neural network damage inspection characteristic vector bottle mouth
  • 相关文献

参考文献11

  • 1潘磊庆,屠康,苏子鹏,杨佳丽,李宏文.基于计算机视觉和神经网络检测鸡蛋裂纹的研究[J].农业工程学报,2007,23(5):154-158. 被引量:39
  • 2谭博,唐少先.基于图像处理的蜜柑大小自动分级方法[J].湖南农机(学术版),2012,39(3):207-209. 被引量:4
  • 3Otsu N.A threshold selection method from gray-level histograms[J].IEEE Trans on SMC-9,1979 (1):62-66.
  • 4Brink A D.Thresholding of digital images using two-dimensional entropies[J].Pattern Recognition,1992,25 (8):803-808.
  • 5刘慧英,王小波.基于OpenCV的车辆轮廓检测[J].科学技术与工程,2010,10(12):2987-2991. 被引量:46
  • 6Ortiz F,Torres F,De J E,et al.Color mathematical morphology for neural image analysis[J].Real-Time Imaging,2002,8 (6):455-465.
  • 7Zhaoxia Fu,Yan Han.A simple and fast algorithm of circle detection[EB/OL].(2011-10-19)[2013-10-03].http://www.cnki.net/KCMS/detail/detail.aspx?QueryID =2&CurRec =l&recid =&filename =EGTA 201110001195&dbname =IPFDLAST2012& dbcode =IPFD&pr =&urlid =&yx =&uid =WEEvREcwSlJHSldS-dnQ1ZStPMjJTejdkZVVmUTlmU080QTZQZzBqSDhVUE x3Wit3cFVxSy8vR1VLUG5pUzhRPQ ==&v =MTg0Nj dxcXhkRWVNT1 VLcmlmWnVKdkVDampVN3ZNS0Z3V 0lDcmZiN0c0SDlETnI0OUZaZW9 HQ1JOS3 VoZGhuajk4 VG5q.
  • 8谷明琴,蔡自兴,李仪.应用圆形度和颜色直方图的交通信号灯识别[J].计算机工程与设计,2012,33(1):243-247. 被引量:21
  • 9张德丰.MATLAB神经网络应用设计[M].2版.北京:机械工业出版社,2011:137-170.
  • 10Yu Pao-Ta,Tsai Huang-Hsu,Lin Jyh-Shyan.Digital watermarking based on neural networks for color images[J].Signal Processing,2001,81:663-671.

二级参考文献36

共引文献109

同被引文献65

引证文献6

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部