期刊文献+

基于SARSA学习算法的USB块传输研究

USB Bulk Transfer Research Based on SARSA Learning Algorithm
下载PDF
导出
摘要 目前USB在PC外设中应用越来越多,传输数据量不断增加对USB传输效率要求越来越高。但实际应用中因USB系统软件、设备自身特性等因素的影响,使得数据传输过程中USB带宽资源浪费严重。针对该问题,利用SARSA学习算法设计一种USB块传输事务调度方法,根据当前状态智能的分配每一帧中的事务。仿真结果表明,在多种块传输情况下,该方法与系统方式相比明显提高了USB带宽有效利用率和吞吐量。 USB is widely used in PC peripherals, and the increase of transmission data results in increas- ingly high requirement on transmission efficiency. However, there is a serious waste of USB bandwidth resources, due to the USB system software and characteristics of devices. A USB bulk transfer transaction scheduling method with SARSA learning algorithm for this problem, intelligently allocating the transac- tions in each frame based on current environment is designed. Simulation results show that this method significantly improves the utilization effectiveness of USB bandwidth and the throughput, compared to the method of the USB system, in the case of multiple bulk transfers.
作者 张秋云 江虹
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期73-78,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国防基础科研计划资助项目(B3120110005)
关键词 USB SARSA 块传输 USB带宽有效利用率 USB SARSA bulk transfer utilization effectiveness of USB bandwidth
  • 相关文献

参考文献8

  • 1COMPAQ, HEWLETT-PACKARD, INTEL. Universal serial bus specification [ S ]. Revision 2. 0, 2000.
  • 2HUANG C Y, KUO T W, PANG A C. QoS support for USB2.0 periodic and sporadic device requests [ C ]//IEEE International Real-Time Systems Symposium, 2004 : 395 - 404.
  • 3INTEL. Universal host controller interface (UHCI) de- sign guide[ S]. Revision 1.1, Intel, 1996.
  • 4MISSIMER E, LI Y, WEST R. Real-time USB commu- nication in the quest operating system [ C ]//IEEE Real- Time Technology and Applications-Proceedings, 2013 : 11 -20.
  • 5ANDERSON DON, DZATKO DAVE, MINDSHARE INC. Universal serial bus system architecture [ M ]. 2nd ed. Addison-Wesley Educational Publishers Inc, 2001: 141 - 154.
  • 6舒波,李大铭,赵新良.基于强化学习算法的公交信号优先策略[J].东北大学学报(自然科学版),2012,33(10):1513-1516. 被引量:4
  • 7JIANG L B, JIANG H, WU S, et al. Decentralized cog- nitive MAC protocol based on SARSA [ C ]//IEEE Inter- national Conference on Communication Technology Pro- ceedings, ICCT, 2012 : 392 - 396.
  • 8SINGH S, JAAKKOLA T, SZEPESVARI C, et al. Con- vergence results for single-step on-policy reinforcement learning algorithms [ J]. Machine Learning, 2000, 38 (03) : 287 - 308.

二级参考文献7

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部