期刊文献+

铝电解槽磁流体数值仿真计算研究

MHD Numerical Simulation of Aluminum Electrolytic Cell
原文传递
导出
摘要 根据磁流体力学的相关理论和铝电解槽内的磁流体特征,建立铝电解槽磁流体计算模型,利用该模型对x方向磁场作用下的二维双阳极下的磁流体流动进行数值计算,分析极距变化和磁场强度对磁流体界面波动的影响:极距的增大有利于磁流体界面波动的稳定,磁场强度增大到一定程度时会引起阳极底掌和铝液的短路,同时导致界面的剧烈波动。 The deformation of melt interface in an aluminum electrolytic cell can cause redistribution of electric current. In addition, the melt flow can lead to induced currents. Such turbulent currents are critical factors affecting interface change and melt flow in the aluminum electrolytic cell. A calculation model for the magnetic fluid in the aluminum electrolytic cell was built based on the related magnetohydrodynamic theory and the characteristics of the magnetic fluid. The model was applied to simulate the flow of the magnetic fluid under 2D double anode in the magnetic field along x direction and analyze the influences of the anode-cathode distance and the magnetic field intensity on the magnetic fluid interface fluctuation.
出处 《金属材料与冶金工程》 CAS 2014年第4期8-13,共6页 Metal Materials and Metallurgy Engineering
基金 中南大学中央高校基本科研业务费专项资金资助(2013ZZTS202)
关键词 铝电解槽 磁流体 数值仿真 界面变化 aluminum electrolytic cell MHD numerical simulation interface change
  • 相关文献

参考文献8

二级参考文献38

  • 1Sele T. Instabilities of the Metal Surfaces in Electrolytic Alurminium Reduction Clls[J]. Met Trans B, 1977, 8B:613.
  • 2Urata N. Magnetics And Metal Pad Instability (A) . Light Metals [C]. New York, NY, USA: TMS, 1985. 581 - 591.
  • 3Urata N. Wave mode coupling and instability in the internal wave in aluminium reduction ceils [A]. Light Metals [C]. San Francisco, CA, United States: TMS, 2005. 455 - 460.
  • 4Segatz M, Droste C. Analysis of magnetohydrodynamic instabilities in aluminium reduction cells[A]. Light Metals [C]. San Francisco, CA, USA: TMS, 1994. 313 - 322.
  • 5Davidson P A, Graham W R, O B H. Instability mechanisms in aluminium reduction cells [A]. Light Metals [C]. San Diego, CA, USA: TMS, 1999. 327 - 331.
  • 6Sun H, Zikanov O, Finlayson B A, et al. The influence of the basic flow and interface deformation on stability of Hall - Heroult ceils [A]. Light Metals[C]. San Francisco, CA, United States: TMS, 2005. 437 - 441.
  • 7Gusev A, Kriuokovsky V, Krylov L, et al. Busbar optimization of high-current reduction cells[A]. Light Metals 2004 [C]. Carlotte, NC, United States: TMS, 2004.467 - 472.
  • 8Dupuis M, Bojarevics V, Freibergs J. Demonstration thermo - elec tric and MHD mathematical models of a 500 KA aluminium electrolysis cell: Part 2 [A]. Light Metals [C] . Carlotte, NC, United States: TMS, 2004. 453 - 459.
  • 9Dupttis M, Bojarevics V. Weakly coupled thermo - electric and MIID mathematical models of an aluminium electrolysis cell[A]. Light Metals[C] .San Francisco, CA, United States: TMS, 2005. 449 - 454.
  • 10Droste C, Segatz M, Vogelsang D. Improved 2 - dimensional model for magnetohydrodynamic stability analysis in reduction ceils [A]. Light Metals[C]. San Antonio, TX, USA: TMS, 1998. 419 - 428.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部