期刊文献+

铁锰生物污泥吸附磷 被引量:4

Phosphorus adsorption oniron and manganese biological sludge
下载PDF
导出
摘要 采用扫描电镜(SEM)、X射线能谱仪(EDS)、比表面和孔隙度分析仪等设备,研究了由生物除铁除锰滤柱反冲洗铁锰生物污泥制得的铁锰氧化物的表征性状,并结合等温吸附-解吸和动力学实验研究对铁锰氧化物吸附磷的吸附特性和相关机制进行探究.结果表明:供试铁锰氧化物是球形颗粒聚合体,孔隙发达且多以微孔形式存在,比表面积为285.6m2/g.铁锰氧化物的磷吸附特性可用Langmuir方程和Freundlich方程来描述,相关系数均大于0.9,达到极显著水平,吸附容量为39.06mg/g.中性盐介质(KNO3)中在最大吸附量时P的解吸率为13.04%.铁锰氧化物对磷的吸附焓变△H0为正值,是吸热过程,吉布斯自由能变△G0为负值,该吸附过程是自发进行的.准二级动力学模型可较好地反映供试铁锰氧化物的等温吸附动力学. The biogenic iron and manganese oxide applied were gained by backwashing from the biological iron and manganese removal filter columns. The research reported in this paper focused on its characteristics and adsorption-desorption properties on phosphorous. The results indicated that the oxide was spherical particle polymer with a developed pore structure mostly in the form of micropore, with a specific surface area of 285.6m2/g. The adsorption isotherm could be well described by Langmuir equation and Freundlich equation with a correlation coefficient larger than 0.9 and a high adsorption capacity of 39.06mg/g. The desorption percentage of adsorbed phosphorus was 13.04%in a neutral electrolyte of KNO3 under maximum phosphorous adsorption conditions. The adsorption enthalpy change △H0 was positive, which indicated the adsorption process was endothermic, meanwhile the minus Gibbs free energy change△G0 suggested it was spontaneous. It was found that the phosphorous adsorption kinetics fitted pseudo-second-order kinetic models.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2014年第10期2528-2535,共8页 China Environmental Science
基金 新世纪优秀人才支持计划(NCET-10-0008) 国家自然科学基金(51222807) 中国博士后科学基金(2012M510299)
关键词 铁锰氧化物 吸附 iron and manganese oxides phosphorus adsorption
  • 相关文献

参考文献24

  • 1Nor I. China aims to turn tide against toxic lake pollution [J]. Science, 2011,333(6047): 1210-1211.
  • 2Qu J, Fan M. The current state of water quality and technology development for water pollution control in China]J]. Critical Reviews in Environ. Sci. Technol., 2010,40(6): 519-560.
  • 3Guo L. Doing battle with the green monster of Taihu Lake [J]. Science, 2007,317(5842): 1166.
  • 4Smith V H, Tilman G D, Nekola J C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems [J]. Environmental Pollution, 1999,100( 1): 179-196.
  • 5Li B, Brett M T. The impact of alum based advanced nutrient removal processes on phosphorus bioavailability [J]. Wat. Res., 2012,46(3):837-844.
  • 6Lee C C, Lin S D. Handbook of environmental engineering calculations [M]. New York: McGraw-Hill, 2000.
  • 7Hano T, Takanashi H, Hirata M, et al. Removal of phosphorus from wastewater by activated alumina adsorbent [J]. Water Science and Technology, 1997,35(7):39-46.
  • 8Gzacar M. Adsorption of phosphate from aqueous solution onto alunite [J]. Chemosphere, 2003,51 (4):321-327.
  • 9Seida Y, Nakano Y. Removal of phosphate by layered double hydroxides containing iron [J]. Wat. Res., 2002,36(5):1306-1312.
  • 10Zeng L, Li X, Liu J. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings [J]. Wat. Res., 2004,38(5):1318-1326.

二级参考文献58

共引文献100

同被引文献38

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部