期刊文献+

不同粒度八面体纳米钼酸镉的表面热力学性质 被引量:1

Surface thermodynamic properties of different-sized nano octahedral cadmium molybdate
原文传递
导出
摘要 室温条件下,采用反相微乳液法制备了一系列不同粒度的八面体纳米CdMoO4,并对其组成、结构及形貌进行了表征.基于纳米CdMoO4与块体CdMoO4热力学性质的本质差异,结合化学热力学基本理论与热动力学原理,导出了获取纳米CdMoO4表面热力学性质的关系式;在此基础上,利用原位微量热技术成功获得了所制备的不同粒度八面体纳米CdMoO4的表面热力学函数,如比表面Gibbs自由能、比表面焓和比表面熵.本文为获取纳米材料表面热力学函数提供了一种有效而普适的新方法. A series of nano octahedral CdMoO4 with different sizes were prepared by reverse-microemulsion method at room temperature, and the constitute, structure and morphology were characterized. Based on the essential difference between thermodynamic properties of nano CdMoO4 and bulk CdMoO4, the equations for acquiring surface thermodynamic properties of nano CdMoO4 were derived via combining the basic theory of chemical thermodynamics with thermokinetics theory. According to the derived equations, surface thermodynamic functions such as specific surface Gibbs free energy, specific surface enthalpy and specific surface entropy of the prepared nano octahedral CdMoO4 at 298.15 K were successfully gained by in situ microcalorimetry. Briefly, this work presented an effective and general method to obtain thermodynamic functions of nano materials.
出处 《中国科学:化学》 CAS CSCD 北大核心 2014年第10期1585-1590,共6页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(20963001 21273050)资助
关键词 钼酸镉 八面体 微乳液法 表面热力学 微量热技术 CdMoO4 octahedron microemulsion method surface thermodynamics microcalorimetry
  • 相关文献

参考文献21

  • 1Chen XB, Liu L, Yu P, Mao S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals.Science,2011,331:746-749.
  • 2Ye J, Dorpe PV, Roy WV, Lodewijks K, Vlaminck ID, Maes G, Borghs G. Fabrication and optical properties of gold semishells. J Phys Chem C,2009,113:3110-3115.
  • 3Yang M, Yin GF, Huang ZB, Kang YQ, Liao XM, Wang H. Preparation and optical properties of biomimic hierarchical ZnO column arrays. Cryst Growth Des,2009,9:707-714.
  • 4Tang NJ, Wen JF, Zhang Y, Liu FX, Lin K, Du YW. Helical carbon nanotubes: catalytic particle size-dependent growth and magnetic properties. ACS Nano,2010,4:241-250.
  • 5Wang H, Chen QW, Sun YB, Wang MS, Sun LX, Yan WS. Synthesis of necklace-like magnetic nanorings. Langmuir,2010,26:5957-5962.
  • 6Ting BP, Zhang J, Khan M, Yang YY, Ying JY. The solid-state Ag/AgCl process as a highly sensitive detection mechanism for an electrochemical immunosensor. Chem Commun,2009:6231-6233.
  • 7Wiley BJ, Wang ZH, Wei J, Yin Y, Cobden DH, Xia Y. Synthesis and electrical characterization of silver nanobeams. Nano Lett,2006,6:2273-2278.
  • 8Sang AJ, Kim K, Kim JH, Lee S. Graphene-wrapped hybrid spheres of electrical conductivity. ACS Appl Mater Interf,2011,3:2904-2911.
  • 9Yan M, Jin TN, Ishikawa Y, Minato T, Fujita T, Chen LY, Bao M, Asao N, Chen MW, Yamamoto Y. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives. J Am Chem Soc,2012,134:17536-17542.
  • 10Yu DH, Qian JS, Xue NH, Zhang DY, Wang CY, Guo XF, Ding WP, Chen Y. Mesoporous nanotubes of iron phosphate: synthesis, characterization, and catalytic property. Langmuir,2007,23:382-386.

二级参考文献45

  • 1Baxter JB, Aydil ES. Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energy Mater Sol Cells, 2006, 90:607-622.
  • 2Hsueh TJ, Hsu CL, Chang SJ, Chen IC. Laterally grown ZnO nanowire ethanol gas sensors. Sens Actuators B, 2007, 126:473-477.
  • 3Chung TF, Zapien JA, Lee ST. Luminescent properties of ZnO nanorod arrays grown on AI:ZnO buffer layer. J Phys Chem C, 2008, 112: 820-824.
  • 4Xu QY, Zhou SQ, Schmidt H. Magnetic properties of ZnO nanopowders. JAlloys Compd, 2009, 487:665-667.
  • 5Lu MP, Song JH, Lu MY, Chen MT, Gao YF, Chen LJ, Wang ZL. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett, 2009, 9:1223-1227.
  • 6Asl SK, Sadrnezhaad SK, Kianpour rad M. The seeding effect on the microstructure and photocatalytic properties of ZnO nano powders. Mater Lett, 2010, 64:1935-1938.
  • 7Park B, Cho K, Kim S, Kim S. Nano-floating gate memory based on ZnO thin-film transistors and A1 nanoparticles. Solid State Sci, 2010, 12:1966-1969.
  • 8Hill TL. Perspective: nanothermodynamics. Nano Lett, 2001, 1: 111-112.
  • 9Hill TL. Extension of nanothermodynamics to include a one-dimensional surface excess. Nano Lett, 2001, 1:159-160.
  • 10Hill TL. A different approach to nanothermodynamics. Nano Lett, 2001, 1:273-275.

共引文献67

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部