期刊文献+

基于应力分析的电镀保护光纤布喇格光栅传感性能分析(英文) 被引量:2

Sensing Properties of Nickel Electroplating Protected Fiber Bragg Grating Based on Stress Analysis
下载PDF
导出
摘要 为保护光纤光栅,提出了一种镀层和光纤光栅结合良好的无粗化过程的化学镀和电镀保护方法.基于应力分析法,得到镀镍光纤光栅的温度灵敏度公式,采用ANSYS有限元软件分析了电镀后光纤光栅应力随温度变化关系,并进行了实验证实.结果表明:光纤光栅电镀后温度灵敏度理论和实验值分别为20.6951pm/℃、22.076pm/℃.理论分析和实验、仿真结果基本一致.相比裸光纤光栅,温度灵敏度增加到原来的2.2倍.该方法不仅可以获得厚度理想的保护层,还可以提高光纤光栅的温度灵敏度. In order to protect Fiber Bragg Grating (FBG), a non-coarsening fiber surface electroless plating and electroplating technics with good adhesion force between layer and fiber was proposed. Based on stress analysis, the temperature sensitivity of protected FBG was achieved in theory, the stresses on the protected FBG under varied temperatures were analyzed by a finite element analysis software (ANSYS) and verified by experiment. The results show that the temperature sensitivity of protected FBG is 20. 6951 pm/℃theoretical and 22. 076 pm/~C from the experiments, which the results of theoretical analysis match the ones from experiments and simulations very well. The temperature sensitivity is 2.2 times as much as that of bare FBG. The desirable thickness of metallic protect layer can be obtained and the temperature sensitivity can be improved.
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第9期17-20,共4页 Acta Photonica Sinica
基金 The National Natural Science Foundation of China(No.21274132) the Scientific Research Foundation of Jiangxi Provincial Education Department(No.GJJ08451)
关键词 电镀 传感性能 热应力 光纤布喇格光栅 ANSYS Electroplating Sensing properties Thermal stress FBG ANSYS
  • 相关文献

参考文献10

二级参考文献82

共引文献140

同被引文献22

  • 1刘钦朋,乔学光,贾振安,王向宇,李婷.双悬臂梁光纤Bragg光栅应力传感器[J].光子学报,2007,36(9):1645-1647. 被引量:10
  • 2GAIZKA D, MARLENE K, MICHAEL L, et al. Use of a novel fiber optical strain sensor for monitoring the vertical deflection of an aircraft Flap[J]. IEEE Sensors Journal, 2009, 9(10): 1219-1225.
  • 3MOKHTAR M R, OWENS K, KWASNY J, et al. Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring[J]. IEEE Sensors Journal, 2012, 12(5): 1470-1476.
  • 4CHAVKO M, KOLLER W A, PRUSACZYK K W, et al. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain[J]. Journal of Neuroscience Methods, 2007, 159(2): 277-281.
  • 5FAN X Y, HE Z Y, KAZUO H. Novel strain- and temperature-sensing mechanism based on dynamic grating in polarization-maintaining erbium-doped fiber[J]. Optics Express, 2006, 14(2): 556-561.
  • 6TIAN Z B, SCOTT S H Y. In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor[J]. IEEE Photonics Technology Letters, 2009, 21(3): 161-163.
  • 7GONG Y, RAO Y J, GUO Y, et al. Temperature-insensitive micro Fabry-Perot strain sensor fabricated by chemically etching Er-doped Fiber[J]. IEEE Photonics Technology Letters, 2009, 21(22): 1725-1727.
  • 8GONG H P, CHAN C C, CHEN LH, et al. Strain sensor realized by using low-birefringence photonic-crystal-fiber-based Sagnac loop[J]. IEEE Photonics Technology Letters, 2010, 22(16): 1238-1240.
  • 9FU H Y, TAM H Y, SHAO L Y, et al. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer[J]. Applied Optics, 2008, 47(15): 2835-2839.
  • 10CHIANG C C, CHEN Z J. A novel optical fiber magnetic sensor based on electroforming long-period fiber grating[J]. Journal of Lingtwave Technology, 2014, 32(19): 3331-3336.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部