期刊文献+

短脉冲激光加工硅膜的传热过程及烧蚀图形的二维计算 被引量:3

2D Calculation of Heating Process and Crater Shape for Ultrashort Lasers Ablation Silicon Films
下载PDF
导出
摘要 为研究短脉冲激光辐照硅膜表面后的能量传输过程,基于双温方程的计算方法以及自由电子气理论,建立了求解能量传输方程的二维有限元模型.针对红外以及可见光波段的激光,通过限制硅膜的大小,有效地控制了计算的精度,并得到电子温度与热流的时间以及空间分布.计算结果表明,激光诱导产生的等离子体密度极大地影响了硅膜表面的反射率及光吸收系数;通过分析电子热流密度随时间的变化曲线,得到硅膜内部能量的传输过程;在激光作用过程中,硅膜内部晶格温度始终保持在熔点以下,证明了等离子体密度是激光烧蚀硅膜的主导因素;预测了激光烧蚀的图形,并分析了不同波长的激光烧蚀图形与高斯曲线的关系. Based on two-temperature model and free electron gas model, a new calculation method, finite element model is fabricated,which provides a new perspective into studying the energy transport process in silicon film irradiated by ultrashort laser pulses. By choosing suitable thickness of silicon films, the 2D spatial and temporal evolutions of the electron temperature as well as carrier density in silicon film irradiated by IR and visible lasers are obtained. The evolutions of complex refractive index and plasma reflectivity are also calculated,through analysis,results show that they are dominated by carrier density. By depicting the electron heat flux evolutions, the energy transport process is analyzed. The distributions of lattice and carrier density are depicted, results show that the lattice temperature is stayed well down below the melting point, and the critical density of carrier density is the dominated factor of ablation. The calculated threshold fluences are validated by comparing study and experimental data. The predicted crater shapes are obtained,which are waiting for experimental validating.
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第9期75-81,共7页 Acta Photonica Sinica
基金 国家自然科学基金(No.10878004/A03)资助
关键词 激光加工 红外吸收 激光热传导 热传导-数学计算 硅膜 Laser ablation Infrared absorption Laser heating Heat transfer-mathematical models Siliconfilms
  • 相关文献

参考文献26

  • 1STEFAN H,Gunnar S,Christoph Z,etal. Analysis of the laserablation processes for thin-film silicon solar cells [J]. AppliedA,2008,92(4):755-759.
  • 2DAVID S A, Hwang J, Park H K, et al. Femtosecond laserdrilling of crystalline and multicrystalline silicon for advancedsolar cell fabrication [J]. Applied Physics A,2012,108 ( 1):113-120.
  • 3KOKAI F. Inoue S, Hidaka H, et al. Catalyst-free growth ofamorphous silicon nanowires by laser ablation [J]. AppliedPhysics A,112(1):1-1.
  • 4周自刚,罗晨,杨永佳,范宗学,全恩思,朱万清,王亮.飞秒激光刻写1×4铌酸锂光波导功分器的研究[J].光子学报,2013,42(4):402-404. 被引量:5
  • 5ZHANG C Y, YAO J W, LI C Q,et al. Asymmetricfemtosecond laser ablation of silicon surface governed by theevolution of surface nanostructures [J]. Optics Express . 2013.21(4),4439-4446.
  • 6HENRY M, VAN D. Kinetics of high-density plasmasgenerated in Si by 1. 06 and 0. 53jim picosecond laser pulses[J]. Physical Reviezv B .1987,35( 15) :8166-8176.
  • 7BONSE J,BAUDACH S,KRUGER J ,et al. Femtosecond laserablation of silicon-modification thresholds and morphology [J].Applied Physics A,2002,74(1) : 19-25.
  • 8CHEN J K,TZOU D Y,BERAUN J E. Numerical investigationof ultrashort laser damage in semiconductors [J]. InternationalJournal of Heat and Mass Transfer , 2005 .48(3-4) : 501-509.
  • 9CHOI T Y, GRIGOROPOULOS C P. Plasma and ablationdynamics in ultrafast laser processing of crystalline silicon [J].Journal of Applied Physics ,2002,92(9) :4918-4925.
  • 10SIM H S,LEE S H, LEE J S. Numerical analysis of craterformation and ablation depth in thin silicon films heated byultrashort pulse train lasers [ J ]. Journal of MechanicalScience Tec/iwo/og^ ,2007,21(11) :1847-1854.

二级参考文献10

  • 1徐建锋,薄中阳,白剑,杨国光.弯曲光波导模拟优化研究[J].光电子.激光,2006,17(9):1078-1081. 被引量:2
  • 2GUI Li, XU Bao-xi, WU Dong jiang, et al. Refractive index change in lithium niobate induced by focused femtosecond laser [J]. Photonics West, 2004:24-29.
  • 3ZHANG Shuang-geng, YAO Jiang-hong, FAN Ya-xian, et al. Second harmonic generation in periodically poled lithium niobate waveguide using femtosecond laser pulses[J]. Applied Physics Letters, 2008, 8(17) : 7135-7139.
  • 4CHEN Hong-yun. Fabrication and Characterization of waveguides in LiNbO3 written with femtosecond laser pulses [C]. Proceedings of 2010 International Conference on Display and Photonies, 2010, 120-122.
  • 5ZHOU Guang-yong, GU Min. Fabrication of 3D photonic crystals in lithium niogate by use of femtosecond laser-induced microexplosion[C]. Optical Society of America, 2006, 1-2.
  • 6GRANDO D, YU J, BALLARINI D, et al. Femtosecond laser writing of surface microstructures in lithium niobate[C]. Nonlinear Guided Waves and Their Applications (NLGW), 2005, WD33.
  • 7SATOSHI A, SATORU S, absorption upon {emtosecond JUNJI H. Transient optical pulse irradiation in lithium niobate crystals [J] . Nonlinear Frequency Generation and Conversion, 2009, 7197121-8.
  • 8孙光春,周自刚,王强,杨永佳.低弯曲损耗光波导的研制[J].中国科技信息,2010(8):48-51. 被引量:1
  • 9罗晨,朱丽,周自刚.飞秒激光制作铌酸锂光波导的研究[J].光子学报,2011,40(12):1799-1802. 被引量:2
  • 10张小康,廖常俊,刘颂豪.波导弯曲半径与弯曲损耗的关系[J].光子学报,2004,33(2):147-150. 被引量:16

共引文献4

同被引文献35

  • 1梁建国,倪晓昌,杨丽,王清月.超短激光脉冲烧蚀铜材料的数值模拟[J].中国激光,2005,32(9):1291-1294. 被引量:13
  • 2Yang T Y B, Kruer W L; More R M, et al. Absorption of laser light in overdense plasmas by sheath inverse brems- strahlung[J]. Phys. Plasmas, 1995, 2:3146.
  • 3Allcock G, Dyer P E, Elfiner G, et al. Experimental ob- servations and analysis of CO2 laser-induced microcracking of glass [ J ]. J Appl. Phys., 1995, 78 (12) :7295-7303.
  • 4Chen Z, Bogaerts A, Vertes A. Phase explosion in atmos- pheric pressure infrared laser ablation from wateririch tar- gets[J]. Appl. Phys. Lett., 2006, 89:041583.
  • 5Matthias E, Reichling M, Siegel J, et al. The influence of thermal diffusion on laser ablation of metal films [ J ]. Appl. Phys. A, 1994, 58(2) : 129-136.
  • 6Lu Q, Mao S S, Mao X, et al. Delayed phase explosion during high-power nanosecond laser ablation of silicon[ J]. Appl. Phys. Lett., 2002, 80: 3072.
  • 7Porneala C, Willis D A. Observation of nanosecond laser- induced phase explosion in aluminum [ J ]. Appl. Phys. Lett. , 2006, 89:211121.
  • 8Durfee C G, Lynch J, Milchberg H M. Development of a plasma waveguide for high-intensity laser pulses[J]. Phys. Rev. E. , 1995, 51:2368.
  • 9Phipps C R, Turner T P, Harrison R F, et al. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single -pluse lasers[J]. J. Appl. Phys., 1988. 64:1083.
  • 10Ren J. The fundamental physical mechanisms and charac- teristics in laser silicon interaction [ J ]. California: stanford university ,2011,2:41-43.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部