期刊文献+

Multiple Solutions for p-Laplacian Type Equations

Multiple Solutions for p-Laplacian Type Equations
下载PDF
导出
摘要 We establish the existence and multiplicity of weak solutions for equations which involve a uniformly convex elliptic operator in divergence form(in particular, a p-Laplacian operator), while the nonlinearity has a(p- 1)-superlinear growth at infinity. Our result completes and extends the relevant results of recent papers. The argument in the proof of our main result relies on the Z2-symmetric version of mountain pass lemma. We establish the existence and multiplicity of weak solutions for equations which involve a uniformly convex elliptic operator in divergence form(in particular, a p-Laplacian operator), while the nonlinearity has a (p- 1)-superlinear growth at infinity. Our result completes and extends the relevant results of recent papers. Tile argument in the proof of our main result relies on the Z2-symmetric version of mountain pass lemma.
作者 CHEN Zi-gao
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第3期335-343,共9页 数学季刊(英文版)
基金 Supported by the NNSF of China(11101145) Supported by the NSF of Henan Province(102102210216)
关键词 variational method uniformly convex divergence type operator symmetric mountain pass lemma variational method uniformly convex divergence type operator symmetricmountain pass lemma
  • 相关文献

参考文献15

  • 1KRISTALY A, RADULESCU V D, VARGA C. Variational Principles in Mathematical Physics, Geometry, and Economics[M]. Cambridge: Cambridge University Press, 2010.
  • 2STRUWE M. Variational MethodsfM]. Berlin: Springer-Verlag, 2000.
  • 3ZHONG Cheng-kui, FAN Xian-ling, CHEN Wen-yuan. Introduction to Nonlinear Functional Analysis[M]. Lanzhou: Lanzhou University Press, 1998.
  • 4BONANNO G. Some remarks on a three critical points theorem[J] , Nonlinear Anal TMA, 2003, 54(4): 651-665.
  • 5DUC D M, THANH VU N. Nonuniformly elliptic equations of p-Laplacian t-ype[J]. Nonlinear Anal TMA, 2005, 61(8): 1483-1495.
  • 6KRISTALY A, LISEI H, VARGA C. Multiple solutions for p-Laplacian type equations[J]. Nonlinear Anal TMA, 2008, 68(5): 1375-1381.
  • 7LE A. Eigenvalue problems for the p-Laplacian[J]. Nonlinear Anal TMA, 2006, 64(5): 1057-1099.
  • 8LE V K, SCHMITT K. Sub-supersolution theorems for quasilinear elliptic problems: a variational approach [J]. Electron J Diff Eqs, 2004, 2004(118): 1-7.
  • 9DE NAPOLI P, MARIANI M C. Mountain pass solutions to equations of p-Laplacian type[J] , Nonlinear Anal TMA, 2003, 54(7): 1205-1219.
  • 10PAPAGEORGIOU N S, ROCHA E M, STAICU V. A multiplicity theorem for hemivariational inequalities with a p-Laplacian-like differential operat,or[J]. Nonlinear Anal TMA, 2008, 69(4): 1150-1163.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部