期刊文献+

Normal Families of Zero-free Meromorphic Functions II

Normal Families of Zero-free Meromorphic Functions II
下载PDF
导出
摘要 Let k, m be two positive integers with m ≤ k and let F be a family of zero-free meromorphic functions in a domain D, let h(z) ≡ 0 be a meromorphic function in D with all poles of h has multiplicity at most m. If, for each f ∈ F, f(k)(z) = h(z) has at most k- m distinct roots(ignoring multiplicity) in D, then F is normal in D. This extends the results due to Chang[1], Gu[3], Yang[11]and Deng[1]etc. Let k, m be two positive integers with m 〈 k and let F be a family of zero-free meromorphic functions in a domain D, let h(z) 0 be a meromorphic function in D with all poles of h has multiplicity at most m. If, for each f C .Y , f(k)(z) = h(z) has at most k - m distinct roots(ignoring multiplicity) in D, then S is normal in D. This extends the results due to Chang[1], Gu[3], Yang[11] and Deng[1] etc.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第3期438-446,共9页 数学季刊(英文版)
基金 Supported by the NNSF of China(11371149)
关键词 meromorphic function NORMALITY shared value meromorphic function normality shared value
  • 相关文献

参考文献1

二级参考文献6

  • 1GU Yong-xing.A normal criterion of meromorphic families[J].Science in China,1979,Special Issue(Ⅰ):267-274.
  • 2CHEN Huai-hui,Gu Yongxing,An improvement of Marty's criterion and its applications[J].Sci Sinica,1993,36A(6):674-681.
  • 3PANG Xue-cheng,LAWRENCE Zalcman.Normal families and shared values[J].Bull London Math Soc,2000,32:325-331.
  • 4RUBEL L A.Four counterexamples to Bloch's principle[J].Proc Amer Math Soc,1986,98:257-260.
  • 5SCHIFF J L.Normal Families[M].New York,Berlin:Springer-Verlag,1993.
  • 6HAYMN W K.Meromorphic Functions[M].London:Oxford Press,1964.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部