期刊文献+

Unified Approach to the Expression for the Moore-Penrose Inverse of a- xy 被引量:1

Unified Approach to the Expression for the Moore-Penrose Inverse of a- xy
下载PDF
导出
摘要 Let A be an unital C*-algebra, a, x and y are elements in A. In this paper, we present a method how to calculate the Moore-Penrose inverse of a- xy*and investigate the expression for some new special cases of(a- xy*). Let .4 be an unital C*-algebra, a,x and y are elements in .A. In this paper, we present a method how to calculate the Moore-Penrose inverse of a - xy* and investigate the expression for some new special cases of (a - xy).
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第3期465-474,共10页 数学季刊(英文版)
基金 Supported by the NNSF of China(10771069)
关键词 C*-algebra generalized inverse Moore-Penrose inverse C*-algebra generalized inverse Moore-Penrose inverse
  • 相关文献

参考文献15

  • 1CHEN Guo-liang, XUE Yi-feng. The expression of generalized inverse of the perturbed operators under type 1 perturbation in Hilbert spacesf.I]. Linear Algebra Appl, 1998, 285: 1-6.
  • 2CHEN Yong-hao, HU Xiao-xia, XU Qing-xiang. The Moore-Penrose inverse of A - XY*[J]. J Shanghai Normal Univer, 2009, 38: 15-19.
  • 3DENG Chun-yuan. On the invertibility of the operator A - XB[J] , Numb Linear Algebra Appl, 2009, 16: 817-831.
  • 4DENG Chun-yuan. A generalization of the Sherman-Morrison-Woodbury formula[J]. Appl Math Lett, 2011, 24: 1561- I564.
  • 5DENG Chun-yuan. On Moore-Penrose inverse of a kind of operators[J]. Proceedings of the Ninth International Conference on Matrix Theory and Its Applications in China, 2010, 2: 88-91.
  • 6DENG Chun-yuan, WEI Yi-min. Some new results of the Sherman-Morrison-Woodbury formula[J] , Proceeding of the Sixth International Conference of Matrices and Operators, 2011, 2: 220-223.
  • 7DU Fa-peng,XUE Yi-feng.The Reverse Order Law for Moore-Penrose Inverse of Closed Operators[J].Chinese Quarterly Journal of Mathematics,2013,28(1):139-146. 被引量:3
  • 8DU Fa-peng, XUE Yi-feng. The expression of the Moore-Penrose inverse of A — XV'fJ]. J East China Normal Univer(Nat Sci), 2010, 5: 33-37.
  • 9HHATWIG R E. Block generalized inverses[J]. Arch Ratio Mech Anal, 1976, 61(3): 197-251.
  • 10HSNDERSON H V, SEARL S R. On deriving the inverse of a sum of matrices[J] , Siam Review, 1981, 23(1): 53-60.

二级参考文献22

  • 1BEN-ISRALE A, GREVILLE T N E. Generalized Inverse: Theory and Applications[M]. New York: Springer- Verlag, 2003.
  • 2BOULDIN R H. The pseudo-inverse of a product[J]. SIAM J Appl Math, 1973, 25: 489-495.
  • 3BOULDIN R H. Generalized inverses and factorizations, recent applications of generalized inverses[J]. Pit- man Ser Res Notes in Math, 1982~ 66: 233-248.
  • 4CHEN Guo-liang, XUE Yi-feng. The expression of generalized inverse of the perturbed operators under type I perturbation in Hilbert spaces[J]. Linear Algebra Appl, 1998, 285: 1-6.
  • 5CVETKOVIC-ILIC D C. Reverse order laws for (1, 3, 4)-generalized inverses in C-algebras[J]. Appl Math Lett, 2011, 24: 210-213.
  • 6DJORDJEVIC D S. Further results on the reverse order law for generalized inverses[J]. SIAM J Matrix Anal Appl, 2007, 29 (4): 1242-1246.
  • 7DJORDJEVIC D S, DINCIE, N,C. Reverse order law for Moore penrose inverses[J]. J Math Anal Appl, 2(110, 361: 252-261.
  • 8DJORDJEVIC D S. Unified approach to the reverse order rule for generalized inverses[J]. Acta Sci Math(Szeg- ed), 2001, 167: 761-776.
  • 9FURUTA T, NAKAMOTO R. Some theorems on certain contraction operators[J]. Proc Japan Acad, 1969, 45: 565-566.
  • 10GALPERIN A M, WAKSMAN Z. On pseudoinverses of operator products[J]. Linear Algebra and Appl, 1980, 33: 123-131.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部