期刊文献+

共振条件下椭圆方程的两个非零解

Two Untrivial Solutions for Elliptic Equation under Resonance Condition
下载PDF
导出
摘要 研究共振条件下的一类椭圆边值问题,利用临界点理论中的Morse理论方法,通过计算零点和无穷远处的临界群,根据Morse不等式,得到该方程两个非零解的存在性. Variational method is one of the powerful tools to solve differential equations, and critical point theory is usually to study the existence of untrivial solutions for Dirichlet boundary value problems. In this paper, by the use of the Morse method in critical point theory, the calculation of the critical group in zero and infinity, and the Morse inequality, the existence of the two untrivial solutions for elliptic equation is verified.
作者 王楠
出处 《许昌学院学报》 CAS 2014年第5期16-19,共4页 Journal of Xuchang University
基金 河南省教育厅科学技术研究重点项目(13A110737) (13A110756) 河南省高等学校青年骨干教师资助计划(2013GGJS-169) 许昌市科技计划项目(5014) (1404003)
关键词 共振 临界群 MORSE理论 Resonance Critical group Morse theory
  • 相关文献

参考文献8

  • 1Bartsch T, Li S J. Critical point theory for asymptotically quadratic functions and anlications to problems with resonance[ J]. Nonl. Anal, 1997, 28(3): 419 -441.
  • 2Chang K C. Infinite dimensional Morse theory and multiple solution problem[ M]. Boston: Birkhauser, 1993.
  • 3Li S J ; Liu J Q. Computations of critical groups at degenerate critical point and applications to differential equations with reso- nance[ J ]. HoustonJ. Math, 1999,25:563 - 582.
  • 4Mawhin J, Willem M. Critical points theory and halmitonian systems[ M]. Berlin: Springer, 1989.
  • 5Liand S J, Perera K. Computation of critical groups in resonance problems where the nonlinearity may not be sublinear[ J]. Nonl. Anal, 2001, 46:777 -787.
  • 6liu S, li S. Critical groups at infinity saddle point reduction and elliptic resonant problems[ J]. Communications in Conte- morary Mathematics, 2003, 5 (5) :761 - 773.
  • 7Perera K, Scheehter M, Nontrivial solutions of elliptic semilinear equations at resonance[ J ]. Manuscripta Math, 2000, 101 (3) :301 -311.
  • 8Li S J, Perera K,Su J B. Computation of critical groups in elliptic boundary-value problems where the asymptotic limits may not exist[ J ]. Proc. Roy. Soc. Edinburgh ,2001,131A :721 -732.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部