期刊文献+

新型高强铝合金的热变形行为及组织演变 被引量:8

Hot Deformation Behavior and Microstructure Evolution of a New High Strength Aluminum Alloy
原文传递
导出
摘要 采用高温压缩实验研究了新型Al-Zn-Mg-Cu高强铝合金在温度300~450℃、应变速率0.001~10 s-1和压缩变形程度30%~80%范围内的热变形行为和组织演变。分析了该合金在实验参数范围内变形的应力-应变曲线特征。动力学分析获得该合金热变形的应力指数和激活能分别为4.97和150.07 kJ/mol,表明合金的热变形主要受扩散所控制。金相组织观察发现,随着变形温度的升高或应变速率的降低,变形组织晶内析出相逐渐溶入基体组织,晶内组织逐渐趋于均匀;同时粗大的晶粒沿变形方向拉长,晶界难溶相的碎化和弥散化程度增大。TEM和EBSD(electron back-scattered diffraction)组织分析表明,该合金在高温压缩变形过程中组织演变主要是亚晶的形成和完善的过程,热变形组织演变机理为动态回复和大应变几何动态再结晶。 Hot deformation behavior and microstructure evolution of a new high strength Al-Zn-Mg-Cu alloy were studied in a temperatures range of 300-450 ℃, a strain rates range of 0.001-10 s-1, and a reductions range of 30%-80% by high-temperature compression tests. Characteristics of stress-strain curves were investigated. Kinetics analyses indicate that the stress exponent and hot deformation activation energy are 4.97 and 150.07 kJ/mol, respectively, suggesting that deformation would be controlled by diffusion mainly. Microstructure observation by OM shows that precipitates in the deformed grain dissolve into the matrix and microstructure in the deformed grain become homogeneous gradually at higher temperatures or lower strain rates, while the prior coarse grains elongate along the deformation direction, and coarse un-dissolved phases at grain boundaries become smaller and more dispersive at the same time. The results of TEM and EBSD show that microstructure evolution during hot deformation of the alloy is characterized by generation and formation of sub-grains, and mechanisms of microstructure evolution during hot deformation is dynamic recovery and geometric dynamic recrystallization at large reductions.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第9期2172-2176,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51175361) 山西省科技攻关项目(20110321013-02) 山西省回国留学人员科研项目(2011-074)
关键词 Al-Zn-Mg-Cu高强铝合金 热变形 组织演变 Al-Zn-Mg-Cu high strength alloy hot deformation microstructure evolution
  • 相关文献

参考文献17

二级参考文献123

共引文献548

同被引文献79

  • 1SHI Guohui,ZHANG Yong'an,LI Xiwu,LI Zhihui,YAN Lizhen,YAN Hongwei,LIU Hongwei,XIONG Baiqing.Dynamic Recrystallization Behavior of 7056 Aluminum Alloys during Hot Deformation[J].Journal of Wuhan University of Technology(Materials Science),2022,37(1):90-95. 被引量:5
  • 2郭强,严红革,陈振华,张辉.多向锻造技术研究进展[J].材料导报,2007,21(2):106-108. 被引量:44
  • 3GB/T4161-2007.金属材料平面应变断裂韧度KIC试验方法[S].
  • 4GB/T228.1-2010金属材料拉伸试验第1部分:室温试验方法[S].中华人民共和国国家标准,2011.
  • 5韩永全,陈树君,殷树言.铝合金变极性等离子焊接电弧产热机理[J].焊接学报,2007,28(12):35-37. 被引量:19
  • 6Lequeu P,Lassince P,Warner T,et al. Aluminum alloy development for the airbus A380 part 2[J]. Advanced Materials & Process, 2007, 165: 41 - 44.
  • 7Nakai M.New aspects of development of high strength aluminum alloys for aerospace applications[J]. Materials Science and Engineering:A,2000,A285(1):62-68.
  • 8Poole W J, Wells M A, Lloyd D J. Advanced aluminum and hybrid aerostructures for future aircraft[J]. Materials Science Forum,2006,519/521(2): 1233-1238.
  • 9Karabin M E,Barlat F,Shuey R T.Finite element modeling of plane strain toughness for 7085 aluminum alloy[J]. Metallurgical and Materials Transactions A,2009,40(2): 354-364.
  • 10Sakai T,Miura H,Goloborodko A,et al.Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475[J].Acta Materialia,2009,57(1):153-162.

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部