期刊文献+

质子转移对低热法制备SrFe_(12)O_(19)结构和性能的影响

Effect of Proton Translocation on Microstructure and Magnetic Properties of SrFe_(12)O_(19) Synthesized by Low-heating Solid-state Reaction
原文传递
导出
摘要 以Fe(NO3)3·9H2O、Sr(NO3)2和C6O7H8为原料,NH3为质子转移剂,在不同pH值条件下,进行低热固相反应,制备出系列前驱体,经900℃灼烧后得到相应产物。采用XRD、SEM和VSM对产物进行表征。结果表明,合成出的产物为平均粒径约100 nm的SrFe12O19纳米粉体。并发现随着pH值从6增加到11,合成产物的XRD衍射峰出现峰值先变大后变小现象;3种晶格参数(a,c,Vcell)出现先减小,后增大规律,而结晶度Xc则先变大,后变小。在pH=10时,所对应的晶格参数均发生最大拐点变化,因此产物的磁性能表现最佳(Ms=51.4 A·m2/kg、Mr=29.5 A·m2/kg、Hc=71.2 A/m),表明磁性粒子表面在此条件下磁交换作用最强。 The serial precursors were prepared by the low-heating solid-state reaction with Fe(NO3)3·9H2O, Sr(NO3)2, C6O7H8 as reacting reagents and NH3 as a reagent of proton translocation at different pH values, and as-synthesized samples were obtained under the condition of calcining at 900 ℃. The samples were characterized by XRD, SEM and VSM. The result indicates as-synthesized samples are nano-SrFe12O19 powders with the crystallite size of about 100 nm. The diffraction peak intensity of samples is firstly from weak to strong, and then from strong to weak. The values of three crystal parameters (a, c, Vcell) all have the same change, from great to small, and then from small to great, while the value of degree of crystallinity is from great to small. With pH=10, the corresponding lattice parameter changes all at the biggest turning point, so that the samples have the best magnetic properties (Ms=51.4 A·m2/kg, Mr=29.5 A·m2/kg, Hc=71.2 A/m), which indicates magnetic exchange interaction is strongest on the particle surface.
作者 刘兵 庄稼
机构地区 西南石油大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第9期2215-2220,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(20271042) 西南石油大学科技创新基金(GIFSS0713)
关键词 质子转移 低热固相法 锶铁氧体 磁性能 proton translocation low-heating solid-state reaction SrFe12O19 magnetic properties
  • 相关文献

参考文献28

  • 1Jotania R B, Khomane R B, Chauhan C C et al. J Magn Magn Mater[J], 2008, 320 (6): 1095.
  • 2Qiu J X, Gu M Y, Shen H G. J Magn Magn Mater[J], 2005, 295(3): 263.
  • 3Hochepied J F, Pileni M P. JAppl Phys[J], 2000, 87(5): 2472.
  • 4Zaitsev D D, Kasin P E, Tretyakov Y D et al. Inorg Mater[J]. 2004, 40(8): 881.
  • 5Hilton T L, Parker M, Ullah M et al. J Appl Phys[J], 1994, 75(10): 5960.
  • 6Sui X Y, Kryder M H. IEEE TMagn[J], 1994, 30(6): 4044 Z.
  • 7hang L Y, Li Z W. JAlloy Compd[J], 2009, 469 (1-2): 422.
  • 8Liu X, Wang J, Gan L Met al.JMagn Magn Mater[J], 1999, 195 (2): 452.
  • 9Ghasemi A, Morisako A, Liu X X. J Magn Magn Mater[J], 2008, 320(18): 2300.
  • 10Tenaud P, Morel A, Kools F et al. J Alloy Compd[J], 2004, 370 (1-2): 331.

二级参考文献13

  • 1段红珍,李凤生,李巧玲.棒状纳米钡铁氧体的制备及镧掺杂对其性能的影响[J].材料科学与工程学报,2007,25(2):179-181. 被引量:17
  • 2Xiao Fuxun(肖复勋),The impact Regulation of the Additive on the Strontium Permagnetferrite and Its Mechanism(添加剂对锶铁氧体永磁磁性能的影响规律及机理探讨)[D].Cheng du:Sichuan University,2003.
  • 3Kloubek J J.Cell Interface Sci[J],1994,163(1):10.
  • 4Xu Haitao,Yang Hua,Xu Wei et al.J Mater Process Tech[J],2007(6):2.
  • 5Astia G,Bolzonib F,Lebreton J M et al.J Magn Magn Mater[J],2004,1845:272.
  • 6Kubo O.IEEE Trans Magn[J],1982,18(6):1122.
  • 7Zhang L et al.J Alloys Compd[J],2009,469:422.
  • 8Liu X et al.J Magn Magn Mater[J],1999,195:452.
  • 9Ghasemi A et al.J Magn Magn Mater[J],2008,320:2300.
  • 10Tenaud P et al.J Alloy Compd[J],2004,370:331.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部