期刊文献+

含临界指数的拟线性椭圆系统正对称解的存在性(英文) 被引量:1

Existence of Positive Symmetric Solutions for Singular Quasilinear Elliptic Systems InvolvingCritical Exponents
下载PDF
导出
摘要 本文讨论一类拟线性椭圆型系统-Δpu=μ|u|p-2 u|x|p+2αQ(x)(α+β)|x|s|u|α-2 u|v|β+σ1|u|q1-2 u,x∈Ω,-Δpv=μ|v|p-2v|x|p+2βQ(x)(α+β)|x|s|u|α|v|β-2v+σ2|v|q2-2v,x∈Ω,u=v=0,x∈Ω,其中Δpu=div(|▽u|p-2▽u)是p-Laplacian,2≤p<N,ΩRN是一个有界光滑区域,0∈Ω,且Ω关于O(N)的一个闭子群G对称,0≤μ<,=((N-p)/p)p,σ1,σ2≥0,0≤s<p,α,β>1满足α+β=p*(s)=(N-s)p/(N-p),p<q1,q2<p*=Np/(N-p),Q(x)是Ω上的连续G对称函数.应用Palais对称临界原理和变分方法,我们建立了该系统几个全新的正G-对称解的存在性结果. This paper is concerned with a class of quasilinear elliptic problem of the form -Δpu=μ|u|^p-2u/|x|p+2αQ(x)/(α+β)|x|^s|u|^α-2u|v|^β+σ1|u|^q1-2 u,x∈Ω,-Δpv=μ|v|^p-2v/|x|p+2βQ(x)/(α+β)|x|^s|u|α|v|^β-2v+σ2|v|^q2-2v,x∈Ω,u=v=0,x∈δΩ,whereΔpu=div(|△↓u|^p-2△↓u)is the p-Laplacian,2≤p〈N,Ω belong to R^N is a smooth bounded domain,0∈ΩandΩis G-symmetric with respect to a closed subgroup Gof O(N),0≤μ〈μ^- withμ^-=((N-p)/p)^p,σ1,σ2 ≥0,0≤s〈pandα,β〉1satisfyα+β=p^*(s)=(N-s)p/(N-p),p〈q1,q2〈p^*=Np/(N-p),Q(x)is continuous and G-symmetric on Ω^-.We establish several existence results of positive G-symmetric solutions by using the symmetric criticality principle of Palais and variational methods for this problem.
出处 《应用数学》 CSCD 北大核心 2014年第4期763-774,共12页 Mathematica Applicata
基金 Supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ130503) the Natural Science Foundation of China(11171247)
关键词 G-对称解 对称临界原理 拟线性椭圆系统 G-symmetric solution Symmetric criticality principle Quasilinear elliptic system
  • 相关文献

参考文献12

  • 1Ghoussoub N, Yuan C. Multiple solutions for quasilinear PDEs involving critical Sobolev and Hardy ex-ponerUs[J]. Trans. Amer. Math. Soc.,2000,352(12) : 5703-5743.
  • 2XUAN Benjin. The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights[J].Nonlinear Anal.,2005,62 (4) : 703-725.
  • 3KANG Dongsheng,LI Gongbao.PENG Shuangjie. On the quasilinear elliptic problems with critical Sobo-lev-Hardy exponents and Hardy terms[J]. Nonlinear Anal. ,2008,68(7) : 1973-1985.
  • 4DENG Yinbin,JIN Lingyu. On symmetric solutions of a singular elliptic equation with critical Sobolev-Hardy exponent[J]. J. Math. Anal. Appl. ,2007 ,329(1) : 603-616.
  • 5Bianchi G,Chabrowski J , Szulkin A. On symmetric solutions of an elliptic equations with a nonlinearityinvolving critical Sobolev exponent[J]. Nonlinear Anal. ,1995,25(1) :41-59.
  • 6Alves C (),de Morais Filho D C,Souto MAS. On systems of elliptic equations involving subcritical orcritical Sobolev exponents[J]. Nonlinear Anal. ,2000,42(5) :771-787.
  • 7LONG Jing,YANG Jianfu. Existence results for critical singular elliptic systems[J]. Nonlinear Anal,,2008,69(11):4199-4214.
  • 8Hsu T. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinear-ities[j]. Nonlinear Anal. ,2009,71(7/8) :2688-2698.
  • 9DENG Zhiying,HUANG Yisheng. Existence of symmetric solutions for singular semilinear elliptic sys-tems with critical Hardy-Sobolev exponents[J]. Nonlinear Anal, RWA.2013,14(1) -.613-625.
  • 10Lions P L. The concentration-compactness principle in the calculus of variations. The limit case[J], Rev.Mat. Iberoamericana 1 (part 1),1985,1(1): 145-201 ; U (part 2),1985,1(2):45-121.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部