摘要
本文研究线性分数阶时滞系统的通解的解析表达式问题.利用Gronwall,得到该系统的解的指数估计,并且获得一个确保使用拉普拉斯变换方法求解分数阶微分方程的合理性的充分性条件.之后,利用Laplace变换方法,给出这些系统的通解公式.
In this paper,analytic expressions for general solutions of linear fractional order delay systems are considered.By using Gronwall inequality,exponential estimates of solution for the fractional order delay systems is presented.A sufficient condition is given to guarantee the rationality of solving fractional order differential equations by the Laplace transform method.Moreover,by the Laplace transform,the general solution formulas of the linear fractional order delay systems are presented.
出处
《应用数学》
CSCD
北大核心
2014年第4期844-850,共7页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(11371027)
the Fundamental Research Funds for the Central Universities(2013HGXJ0226)
the Fund of Anhui University Graduate Academic Innovation Research(10117700004)
关键词
分数阶时滞系统
指数估计
基础解
通解
Fractional order delay system
Exponential estimation
Fundamental solution
General solution