期刊文献+

分数阶时滞系统的通解(英文) 被引量:1

On General Solution of Fractional Order Delay Systems
下载PDF
导出
摘要 本文研究线性分数阶时滞系统的通解的解析表达式问题.利用Gronwall,得到该系统的解的指数估计,并且获得一个确保使用拉普拉斯变换方法求解分数阶微分方程的合理性的充分性条件.之后,利用Laplace变换方法,给出这些系统的通解公式. In this paper,analytic expressions for general solutions of linear fractional order delay systems are considered.By using Gronwall inequality,exponential estimates of solution for the fractional order delay systems is presented.A sufficient condition is given to guarantee the rationality of solving fractional order differential equations by the Laplace transform method.Moreover,by the Laplace transform,the general solution formulas of the linear fractional order delay systems are presented.
作者 刘可为 蒋威
出处 《应用数学》 CSCD 北大核心 2014年第4期844-850,共7页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11371027) the Fundamental Research Funds for the Central Universities(2013HGXJ0226) the Fund of Anhui University Graduate Academic Innovation Research(10117700004)
关键词 分数阶时滞系统 指数估计 基础解 通解 Fractional order delay system Exponential estimation Fundamental solution General solution
  • 相关文献

参考文献1

二级参考文献24

  • 1Weihua Deng,Changpin Li,Jinhu Lü.Stability analysis of linear fractional differential system with multiple time delays[J]. Nonlinear Dynamics . 2007 (4)
  • 2Nicole Heymans,Igor Podlubny.Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives[J]. Rheologica Acta . 2006 (5)
  • 3Sami I. Muslih,Dumitru Baleanu.Formulation of Hamiltonian Equations for Fractional Variational Problems[J]. Czechoslovak Journal of Physics . 2005 (6)
  • 4Ma?gorzata Klimek.Fractional Sequential Mechanics - Models with Symmetric Fractional Derivative[J]. Czechoslovak Journal of Physics . 2001 (12)
  • 5Deng W,Li C,Lu J.Stability analysis of linear fractional di?erential system with multiple time scales. Nonlinear Dynamics . 2007
  • 6Diethelm K,Ford N J,Freed A D,Luchko Y.Algorithms for the fractional calculus: A selection of numerical methods. Computational Methods in Applied Mathematics . 2005
  • 7Podlubny I.Fractional derivatives: History, Theory, Application. Symposium on applied fractional calculus . 2007
  • 8Kilbas A,,Srivastava H M,,Trujillo J J.Theory and Applications of Fractional Differential Equations. North-Holland Mathematicas Studies . 2006
  • 9Heymans N,Podlubny I.Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta . 2006
  • 10Kilbas A A,Rivero M,Trujillo J J.Existence and uniqueness theorems for differential equations of fractional order in weighted spaces of continuous functions. Frac Calc Appl Anal . 2003

共引文献1

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部