摘要
本文用Lyapunov函数方法和半鞅收敛定理研究无界可变延迟随机神经网络的指数稳定性.给出判定零解的均方指数稳定性和几乎必然稳定性的充分条件.本文所用的方法和结果适用于无界延迟系统,涵盖了已有文献中有界延迟系统的结果.
The exponential stability of stochastic neural networks with unbounded time-varying delays is investigated with the help of Lyapunov function and the semi-martingale convergence theorem.The sufficient conditions to guarantee the almost sure exponential stability and exponential stability in mean square of a trivial solution are given.The method and results here on unbounded delay systems cover the usual bounded delay as a special case.
出处
《应用数学》
CSCD
北大核心
2014年第4期851-857,共7页
Mathematica Applicata
基金
Supported by the National Social Science Foundation of China(14CTJ008)
关键词
随机神经网络
无界延迟
指数稳定性
Stochastic neural network
Unbounded delay
Exponential stability