期刊文献+

两个四阶奇异微分算子积的自伴性 被引量:1

On the Self-adjointness of Product of Two 4th-order Singular Differential Operators
下载PDF
导出
摘要 本文在区间[a,∞)上研究由具有任意亏指数的对称常微分算式ly:=y(4)-(py′)′+qy生成的两个四阶奇型微分算子Li(i=1,2)的积L2L1的自伴性.在0∈Π(L0(l))及l2在L2[0,∞)中是部分分离的假设条件下,借助实参数解对自共轭域的描述定理,获得两个四阶微分算子乘积自伴的充要条件,同时证明若L1和L2自伴,则L=L2L1自伴的充要条件是L1=L2,其中-∞<a<∞,2≤d≤4,Π(L0(l))是l在L2[a,∞)中产生的最小算子L0(l)的正则型域. In this paper,the self-adjointness of product L2L1 of two 4th-order singular differential operators Li(i=1,2)generated by the symmetric ordinary differential expressionly=y(4)-(py′)′+qy on[a,∞),with arbitrary deficiency indices is studied.Under the assumption that the product l2 is partially separated in L^2[a,∞)and 0∈Π(L0(l)),by means of the theorem of description for self-adjoint domains in terms of certain solutions for realλ,we obtain a necessary and sufficient condition for the self-adjointness of product of two 4th-order differential operators and prove that if both L1 and L2are self-adjoint,then L =L2L1is selfadjoint if and only if L1=L2,where-∞〈a〈∞,2≤d≤4,Π(L0(l))is the regularity domain of the minimal operator L0(l)generated by lin L^2[a,∞).
出处 《应用数学》 CSCD 北大核心 2014年第4期865-873,共9页 Mathematica Applicata
基金 国家自然科学基金资助项目(11361039)
关键词 两个微分算子的积 正则型域 实参数解 部分分离 自共轭域 Product of two differential operator Regularity domain Real-parameter solution Partial separation Self-adjoint domain
  • 相关文献

参考文献3

二级参考文献25

  • 1魏广生.对称算子自伴域的一种新描述[J].内蒙古大学学报(自然科学版),1996,27(3):305-310. 被引量:3
  • 2曹之江 刘景麟.奇异对称常微分算子的亏指数理论[J].数学进展,1983,12(3):161-178.
  • 3Edmunds D E, Evans W D. Spectral Theory and Differential Operators [M]. Oxford: Oxford University Press, 1987.
  • 4Kauffman R, Read T, Zettl A. The Deficiency Index Problem of Powers of Ordinary Differential Expressions[M]. Lect. Notes in Math. 621, Berlin, New York: Springer-Verlag, 1977.
  • 5Liu Jinglin. On the Calkin approach of self-adjoint extensions of symmetric operators [J]. (in Chinese), J Inner Mongolia University, 1988, 19(4): 573-587.
  • 6Naimark N A. Linear Differential Operators [M]. Vol. Ⅱ, Ungar, New York, 1968.
  • 7Race D, Zettl A. On the commutativity of certain quasi-differential expression I [J]. J London Math. Soc.,1990, 42(2): 489-504.
  • 8Sun Jiong. On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices [J]. Acta Math. Sinica (New Series), 1986, 2(2): 152-167.
  • 9Yuan Xiaoping. Regular Sturm-Liouville problems with mixed self-adjoint boundary conditions [J]. (In Chinese), J Inner Mongolia University, 1990, 21(1): 35-41.
  • 10Cao Zhijiang. Ordinary Differential Operators [M] (In Chinese). Shanghai: Shanghai Sinence and Technology Press, 1986.

共引文献12

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部