期刊文献+

磁控溅射ZrAlCuN薄膜的微观组织与力学性能

Microstructure and Mechanical Properties of ZrAlCuN Films Prepared by Magnetron Sputtering
下载PDF
导出
摘要 采用磁控溅射技术制备不同原子比的ZrAlCuN薄膜。采用场发射扫描电镜(FESEM)观察截面形貌,高分辨透射电镜分析微观组织结构,纳米压入法测定薄膜的硬度,压入法(维氏压头)测定薄膜的韧性。结果表明:Zr0.36Al0.15Cu0.01N0.48薄膜截面呈纳米尺度柱状晶,沿沉积方向生长,仅存在[111]、[200]、[220]、[311]取向的5-10nm ZrN晶粒,未发现AlN及Cu独立相,硬度约41.7GPa(载荷10mN),弹性模量约257.8GPa。Zr0.29Al0.24Cu0.08N0.39薄膜呈纳米尺度柱状晶,存在10-20nm ZrN纳米晶以及Cu[111]纳米晶,硬度约27GPa(载荷10mN),弹性模量约225.8GPa。由于前者具备较高的硬度/弹性模量比,从而表现出较好的韧性。 ZrAlCuN films with different atom ratios were deposited by magnetron sputtering method.The morphology and microstructure were investigated by field emission scanning electron microscopy(FESEM)and transmission electron microscopy(TEM).Nanoindentation and Vicker's indentation methods were used to measure the hardness and toughness of the films,respectively.Results show that the Zr0.36Al0.15Cu0.01N0.48 film exhibits nano-columnar structure extending along the growth direction.Equiaxed ZrN(5-10nm)nano crystals with[111],[200],[220]and[311]orientations other than AlN and Cu are found in this film.Zr0.29Al0.24Cu0.08N0.39 film shows nanocolumnar structure,and there exist ZrN(10-20nm)nano crystals and Cu[111]crystals.Zr0.36Al0.15Cu0.01N0.48 film possesses high hardness and higher H/E(H=41.7GPa and E=257.8GPa)than the Zr0.29Al0.24Cu0.08N0.39 film,resulting in the former better toughness.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2014年第5期109-114,共6页 China Surface Engineering
基金 国家自然科学基金(51102283)
关键词 磁控溅射 薄膜 硬度 韧性 微观组织 magnetron sputtering film hardness toughness microstructure
  • 相关文献

参考文献15

  • 1Zhang S, Sun D, Fu Y Q, et al. Recent advances of super- hard nanocomposite coatings: A review [J]. Surface &. Coatings Technology, 2003, 167: 113-119.
  • 2A. A. Voevodin,J. S. Zabinski,C. Muratore.Recent Advances in Hard, Tough, and Low Friction Nanocomposite Coatings[J].Tsinghua Science and Technology,2005,10(6):665-679. 被引量:19
  • 3Musil J, Zeman P, Hruby H, et al. ZrN/Cu nanocompos- ite film a novel superhard material [J]. Surface & Coat- ings Technology, 1999, 120-121(1): 179-183.
  • 4Musil J, Karvankova P, Kasl J. Hard and superhard Zr-Ni -N nanocomposite films [J]. Surface & Coatings Technol- ogy, 2001, 139(1): 101-109.
  • 5Audronis M, Jimenez O, Leyland A, et al. The mor- pholoyg and structure of PVD ZrN- Cu thin films [J]. Journal of Physics D- Applied Physics, 2009, 42 (1) : 1 -10.
  • 6Hsieh J H, Liu P C, Li C. Mechanical properties of TaN- Cu nanoeomposite thin films [J]. Surface & Coatings Technology, 2008, 202(22/23): 5530-4.
  • 7Rahmati A. Reactive DC magnetron sputter deposited Ti- Cu-N nano-eomposite thin films at nitrogen ambient [J]. Vacuum, 2011, 85(9): 853-60.
  • 8Makino Y, Mori M, Miyake S, et al. Characterization of Zr- AI-N films synthesized by a magnetron sputtering method [J]. Surface & Coatings Technology, 2005, 193 : 219-222.
  • 9Mayrhofer P H, Sonnleitner D, Bartosik Met al. Structur- al and mechanical evolution of reactively and non-reactively sputtered Zr-AI-N thin films during annealing [J]. Sur- face & Coatings Technology, 2014, 244: 52-56.
  • 10Lamin R, Sanjines R, Karimi A, et al. Microstructure and nanohardness properties of ZrAIN and ZrCuN thin films [J]. Journal of Vacuum Science & Technology A, 2005, 23(4) : 593-598.

二级参考文献18

  • 1Bland R D. A parametric study of ion-plating aluminum coatings on uranium. Electrochemical Technology, 1968, 6(7/8): 272-278.
  • 2Briggs J L. Corrosion Resistance Behavior of Zinc Coatings on Uranium and Uranium Alloys. 1985, REP-3651.
  • 3Chang F C, Levy M, Jackman B, et al. Assessment of corrosion resistance coating for a depleted uranium-0.75titanium alloys. Surface and Coatings Technology, 1991, 48(1): 31-39.
  • 4Weirick L J. Evaluation of Metallic Coatings for the Corrosion Protection of a Uranium-3/4 Weight Percent Ti Alloy. Sardia Lab Report. 1974, SLL-73-5024.
  • 5Bland R D, McDonald J E, Mattox D M. Ion Planted Coating for the Corrosion Protection of Uranium. Atomic Eenergy Commission contract Report, 1965, SC-DR-65-519.
  • 6Greenwood R C, Ritchic A G. Preparation, Characteristic and Zorrosion Resistance of Uranium Ion Plated with Aluminum. AWRE Report, 1982, 023/82.
  • 7Raveh A, Arkush R, Zalkind S. Passivation of uranium metal by radio-frequency plasma nitriding against gas phase(H2,H20) corrosion. Surface and Coatings Technology, 1996, 82(1): 38-42.
  • 8Liu T W, Dong C, Wu S, et al. TiN, TiN gradient and TiffiN multi-layer protective coatings on uranium. Surface and Coatings Technology, 2007, 201(15): 6737-6741.
  • 9Lin Jianliang, Sproul W D, Moore J J, et al. High rate deposition of thick CrN and Cr2N coatings using modulated pulse power(MPP) magnetron sputtering. Surface and Coatings Technology, 2011, 205(10): 3226-3234.
  • 10Elangovan T, Kuppusami P, Thirumurugesan R, et al. Nanostructured CrN thin films prepared by reactive pulsed DC magnetron sputtering. Materials Science and Engineering B, 2010, 167(1): 17-25.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部