期刊文献+

类蝴蝶翅膀表面微纳结构的制备及其疏水性 被引量:11

Preparation and Hydrophobic Properties of the Micro-nano Structure of Butterfly Wing Surface
下载PDF
导出
摘要 在金属表面构筑微纳米粗糙结构后以低表面能物质修饰,可以获得超疏水的金属表面,对实现防水、防腐及表面自清洁等功能具有重要的意义。以钛片为基底,利用简单易行且低成本的喷砂-酸蚀法,对其进行粗糙化处理,并使用低表面能物质氟碳树脂进行表面改性,获得了超疏水性表面。测量了试样表面与蒸馏水的静态接触角,将试样置于空气、模拟海水、质量分数为3%的NaOH和HCl溶液中进行了耐环境测试,观察了试样表面的微观形貌。结果表明:在光滑的钛基底上用氟碳树脂修饰后,得到的疏水表面接触角仅为103°;而钛片表面经喷砂-酸蚀后,再利用氟碳树脂进行疏水化修饰,得到与水接触角为156°的超疏水表面。经表面粗糙化处理和低表面能物质修饰后得到的钛基底上形成了类蝴蝶翅膀表面微纳结构的蜂窝状超疏水表面,具有优异的耐环境性和良好的自清洁效果。 Super-hydrophobic metal surface is very important because of their wide applications,in waterproof,anticorrosion and self-cleaning aspects.These special surfaces can be achieved by combining the micro-nano structure with the low surface energy material on the metal surface.To prepare super-hydrophobic surface,the surface roughening was attained by using sand-blasting and acid-etching on Ti substrate as a simple and low cost route,and subsequently modified using fluorine carbon resin as low surface energy material.The static contact angle of the specimen surface and the distilled water was measured.The environmental testing was taken under the air,the simulated seawater and the mass fraction of 3% NaOH and HCl solution,and the microstructure of the sample surface was observed.The results show that the surface contact angle of fluorine carbon resin modified original Ti substrate is 103°;while the hydrophobic surface contact angle is 156°,as for the fluorocarbon resin modified Ti substrate with sand blasting and acid etching pre-roughening treatment.According to the SEM results,the honeycomb structure of super-hydrophobic surface is similar to the micronano structure of butterfly wing,which exhibits an excellent environment resistance and a good self-cleaning effect.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2014年第5期131-136,共6页 China Surface Engineering
关键词 表面改性 超疏水 氟碳树脂 surface modification titanium super-hydrophobic fluorine carbon resin
  • 相关文献

参考文献3

二级参考文献22

  • 1Ma M, Hill R M. Curr. Opin. Colloid In., 2006,11(4):193- 202.
  • 2Li X, Du X, He J. Langrnuir, 2010,26(16):13528-13534.
  • 3Mishchenko L, Hatton B, Bahadur V, et al. A CS Nano, 2010,4(12):7699-7707.
  • 4LI Song-Mei, ZHOU Si-Zhuo, LIU Jian- Hua. A cta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2009,25(12):2581-2589.
  • 5Ishizaki T, Masuda Y, Sakamoto M. Langmuir, 2011,27(8) 4780-4788.
  • 6Weng C, Chang C, Peng C, et al. Chem. Mer., 2011,23(8) 2075-2083.
  • 7Grignard B, Vaillant A, de Coninck J, et al. Langmuir, 2011,27(1):335-342.
  • 8Lu S, Chen Y, Xu W, et al. Appl. Su. Sci., 2010,256(20): 6072-6075.
  • 9Xu W, Liu H, Lu S, et al. Langmuir, 2008,24(19):10895- 10900.
  • 10Kietzig A, Hatzikiriakos S G, Englezos P. Langmuir, 2009, 25(8):4821-4827.

共引文献43

同被引文献137

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部