期刊文献+

用EEGLAB分析脑电信号 被引量:6

EEGLAB Analysis of EEG Signals
下载PDF
导出
摘要 EEGLAB是一种基于Matlab的工具箱。它主要用于处理连续记录的脑电信号(EEG)脑磁信号(MEG)和其它电生理数据。它运用的方法主要有独立分量分析(ICA)、时间-频率分析[1]、绘制ERP图、排除伪迹和几种有用的可视化模式(对于求平均和单次提取数据)等。EEGLAB还为从事神经信号处理方法研究的开发人员提供了一个可扩展的开源的平台,他们利用邮件列表和世界各地的研究人员一起讨论新方法,研究出更多的EEGLAB的新插件。EEGLAB的插件可以通过下载设置后,直接融入并出现在用户菜单。EEGLAB可用于研究各种脑电信号,这些研究有助于对人类情绪探知和生理病理情况下的脑机制做研究,有助于了解人脑的工作原理,找到更有效的治疗精神疾病的方法。 EEGLAB is a toolbox based on Matlab .It is mainly used for processing continuous related brain electric sig -nal ,brain magnetic signal and other electrophysiological data .Its main methods include independent component analysis (ICA) ,time-frequency analysis(IAF)[1] ,the map of ERP ,artifact rejection and several useful visual models (for the average and single-trial data) ,etc .For creative research programmers and methods developers ,EEGLAB offers an extensible ,open-source platform through which they can share new methods with the world research community by publishing EEGLAB 'plug-in'functions that appear automatically in the EEGLAB menu .EEGLAB can be used to study a variety of EEG signals .These studies based on EEGLAB will help the detection of human emotions and the study to the pathogenesis of mental illness , which will find more effective methods for the treatment of mental illness .
作者 程学梅 崔园
出处 《计算机与数字工程》 2014年第10期1967-1970,共4页 Computer & Digital Engineering
基金 创新实验计划(编号:CXJS201311)资助
关键词 EEGLAB的特点 独立分量分析(ICA) 时间-频率分析(TFA) 绘制ERP图 the characteristics of EEGLAB map of ERP
  • 相关文献

参考文献9

  • 1A. Goljahania, P. Bisiacchib, G. Sparacinoa. An EE- GLAB plugin to analyze individual EEG alpha rhythms using the "channel reactivity-based method"[J], com- puter methods and programs in biomedicine, 2014,113 :853-861.
  • 2Gennady G. Knyazev. Comparison of spatial and tem- poral independent component analyses of electroenceph- alographic data: A simulation study[J]. Clinical Neu- rophysiology, 2013,124: 1557-1569.
  • 3Delorme A., Makeig, S., Fabre-Thorpe, M., et al. From Single-trial EEG to Brain Area Dynamics. Pub- lished in Neurocomputing[M]. Published in Neuro- computing, 2002,44-46 : 1057-1064.
  • 4杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学(生物医学工程分册),2000,23(3):129-134. 被引量:58
  • 5Nima Bigdely-Shamlo, Tim Mullen, Kenneth Kreutz- Delgado, et al. Measure projection analysis; A proba- bilistic approach to EEG source comparison and multi- subject inference[J]. SciVerse Science Direct Neurolm- age, 2013,72: 287-303.
  • 6Clemens Brunner, Arnaud Delorme, Scott Makeig. EEGLAB-an open source Matlab toolbox for electro- physiological research. Biomed Tech[M]. Biomed Tech 2013; 58 (Suppl. 1) 2013 by Walter de Gruyter Berlin Boston. DOI 10. 1515/bmt-2013-4182.
  • 7王亚卿,曹艳珺,樊浩宇,郭明磊,宋秋霞.基于脑电(EEG)信号的“愉快-不愉快”情绪分析[J].计算机与现代化,2012(7):88-91. 被引量:5
  • 8许慰玲,黄静霞,沈民奋.基于小波包分解的精神分裂症脑电信号分析[J].电子测量与仪器学报,2004,18(2):35-40. 被引量:4
  • 9Arnaud Delorme, Scott Makeig. EEGLAB:an open source toolbox for analysis of single-trial EEG dynam- ics including independent dent component analysis[J]. Journal of Neuroscience Methods, 2004, 134 (9-21) :92093-0961.

二级参考文献23

  • 1沈民奋,黎展程,孙丽莎.小波包熵在脑电信号分析中的应用[J].数据采集与处理,2005,20(1):48-53. 被引量:11
  • 2李勇.脑电信号现代分析方法的发展[J].国外医学(生物医学工程分册),1996,19(4):199-202. 被引量:10
  • 3谢松云,张振中,杨金孝,张坤.脑电信号的若干处理方法研究与评价[J].计算机仿真,2007,24(2):326-330. 被引量:25
  • 4谢松云,张振中,张伟平,等.ICA方法在脑电信号去噪中的应用研究[C]//张剑保,卢虹冰,徐进.中国生物医学工程进展.2007中国生物医学工程联合学术年会,西安:西安交通大学出版社,2007:254-257.
  • 5李颖洁,邱意弘,等.恼电信号分析方法及其应用[M].北京:科学出版社,2009.
  • 6Choi Senngjin. Differential learning algorithms for decorrelation and independent component analysis [J]. Neural Network, 2006(10) : 1558-1567.
  • 7Foresta F L, Morabito F C, Azzerboni B. PCA and ICA for the extraction of EEG dominant compgnents in cerebral death assessment [ C ]//Proceedings of the 2005 International Joint Conference on Neural Networks. Montreal, Quebec,Canda, 2005:2532-2537.
  • 8Delorme A, Makeig S. EEGLAB:An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [ J ]. Journal Neuroscience Methods, 2004,134( 1 ) :9-21.
  • 9Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999
  • 10Amari SI,Cichocki AC.Adaptive blind signal processing-Neural network approaches[].Proceedings of the IEEE.1998

共引文献64

同被引文献30

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部