期刊文献+

遥感图像中快速居民区域提取方法研究 被引量:1

Fast Residential Area Extraction from Remote Sensing Image Based on Log-Gabor Filter
下载PDF
导出
摘要 城市变化监控能够有效帮助政府机关和城区规划部门更新地图并制定长远的发展计划。论文提出了一个基于Log-Gabor滤波器快速提取遥感图像中居民区域的新方法。方法分为三步:首先使用Log-Gabor滤波器提取遥感图像中具有边缘方向性的城市居民区域特征;然后在此基础上"耦合"相同居民区域不同方向滤波器提取出来的纹理特征,进而获得完整的居民区域;最后利用Otsu方法在结果图像中对居民区域进行标记和分割。实验将本论文方法同传统纹理提取手段共生矩阵分析方法进行比较证明了本文方法的优越性。 Monitoring urbanization may help government agencies and urban region planners in updating land maps and forming long-term plans accordingly .In this paper ,a novel method for fast extracting residential area from remote sensing images based on log-Gabor filter is proposed .The method is divided in three steps .Firstly ,the edge-oriented urban charac-teristics in a remote sensing image are detected using log-Gabor filter .Secondly ,with the filtering orientations perpendicular to each other ,two log-Gabor filter response images to suppress the noise and acquire a smooth spatial region .Thirdly ,a set of smooth regions served as residential areas can be extracted using Otsu's method .The comparison of our method with the classical texture analyzing method of co-occurrence matrix demonstrates its superiority .
出处 《计算机与数字工程》 2014年第10期1971-1974,共4页 Computer & Digital Engineering
关键词 居民区域提取 LOG-GABOR 滤波器 遥感图像 地面分辨率 residential area extraction Log-Gabor filter remote sensing images spatial resolution
  • 相关文献

参考文献11

  • 1K. Weigl, G. Giraudon, M. Berthod. Application of projection learning to the detection of urban areas in SPOT satellite images. Rapports de recherche-INRIA, 1993.
  • 2S. Yu, M. Berthod, G. Giraudon. Toward robust a- nalysis of satellite images using map information-appli- cation to urban area detection. Geoscience and Remote Sensing, IEEE Transactions on, 1999,37 : 1925-1939.
  • 3W. Fan, W. Chao, Z. Hong. Residential area infor mation extraction by combining China airborne SAR and optical images, in IEEE International Geoscience and Remote Sensing Symposium, 2004 : 2568-2570.
  • 4V. Karathanassi, C. Iossifidis, D. Rokos. A texture based classification method for classifying built areas according to their density. International Journal of Remote Sensing, 2000,21 :1807-1823.
  • 5J. A. Benediktsson, M. Pesaresi, K. Amason. Classi- fication and feature extraction for remote sensing ima- ges from urban areas based on morphological transfor- mations. Geoscience and Remote Sensing, IEEE Transactions on, 2003,41 : 1940-1949.
  • 6P. Zhong, R. Wang. A multiple conditional random fields ensemble model for urban area detection in re- mote sensing optical images. Geoscience and Remote Sensing, IEEE Transactions on, 2007,45 : 3978-3988.
  • 7B. Sirmacek, C. Unsalan. Urban-area and building de- tection using SIFT keypoints and graph theory. Geosci- ence and Remote Sensing, IEEE Transactions on, 2009,47 : 1156-1167.
  • 8Lowe D G. Distinctive image features from scale-invari- ant keypoints[J]. International journal of computer vi- sion, 2004,60(2) : 91-110.
  • 9Lowe D G. Object recognition from local scale-invariant features[C]//Computer vision, 1999. The proceedings of the seventh IEEE international conference on. Ieee, 1999,2:1150-1157.
  • 10D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A,1987,4:2379-2394.

同被引文献16

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部