期刊文献+

一种基于HGPC的交通监控视频抖动异常检测方法 被引量:3

A Detection Based on HGPC for Traffic Surveillance Video Shaking
下载PDF
导出
摘要 在交通监控视频中,不可避免的会出现导致监控系统性能下降的视频图像抖动的异常现象。为检测此类异常现象,提出了一种基于分级的灰度投影相关系数法(Hierarchical Gray Project Correlation,HGPC)。首先,使用全局的灰度投影相关系数法对视频进行粗检测;然后,为提高检测精度,采用局部灰度投影相关系数法进行细检测。该算法在海信网络科技有限公司交通监控贵阳视频库上进行检测,精度达到91.4%,高于传统的测试方法,且检测时间仅为47ms,满足实时性要求,证明此算法有效。 In the traffic surveillance videos, the video shaking inevitably arises. The video shaking make monitor system's performance degradation. A hierarchical gray project the correlation algorithm (HGPC) is proposed to solve the problem of the traffic surveillance video shaking. First, global hierarchical gray project correlation algorithm (GHGPC) is used to detect the video roughly. Then, the local hierarchical gray project correlation algorithm (LHGPC) is used to deal with the results from the rough matching in order to further improve the detection accuracy. Hisense network technology co. , LTD. Guiyang intelligent traffic monitoring video library is detectd based on HGPC algo posed algorithm is 91.4%, which is superior to the previous metho only 47ms, which meets the real-time requirement. Therefore, HGP to dispose the video shaking.
出处 《青岛大学学报(自然科学版)》 CAS 2014年第3期38-43,共6页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金(批准号:61170106)资助 山东省高等学校科技计划项目(批准号:J14LN39)资助
关键词 视频图像抖动 分级 灰度投影 相关系数 video shaking hierarchical gray projection correlation coefficient
  • 相关文献

参考文献11

二级参考文献63

  • 1徐鲁安,叶懋冬,章琦.一种新的图像质量评价方法[J].计算机工程与设计,2004,25(3):418-420. 被引量:11
  • 2GLENN W E. Digital image compression based on visual perception and scene properties[J]. SMPTE Journal, 1993,102(5) :392-398.
  • 3MANNOS J L, SAKRISON J D. The effects of a visual fidelity criterion on the encoding ofimages [ J ]. IEEE Trans on Information Theory, 1974,20(4) : 525-536.
  • 4ESKICIOGLN A M, FISHER P S. Image quality measures and their performance [ J]. IEEE Trans on Communications, 1995, 43 (12) : 2959-2965.
  • 5WANG Zhou, BOVIK A C, SHEIKH H R,et al. Image quality assessment: from error visibility to structural similarity [ J] . IEEE Yrans on Image Processing, 2004,13(4):600-612.
  • 6WANG Zhou , BOVIK A C ,LU Li-gang. Why is image quality assessment so difficult[ C ]//Proc of IEEE International Conference on Acoustics, Speech, and Signal Processing. 2002:3313-3316.
  • 7PAN Xiao-zhou, YANG Chun-ling, XIE Sheng-li. An improved structural similarity for image quality assessment[ C]//Proc of SPIE. 2005:432-440.
  • 8WANDELL B A.Foundations of vision [ M]. Sunderland: Sinauer Press, 1995: 1-10.
  • 9NARANJAN D V, THOMAS D K, WILSONS S G, et al. Image quality assessment based on a degradation model [ J ]. IEEE Trans on Image Proceedings, 2000,9(4) :636-650.
  • 10LAI Y K,KUO CC J C. A harr wavelet approach to compressed image quality measurement [ J]. Journal of Visual Communication and Image Representation, 2000,11 ( 1 ) : 17-40.

共引文献32

同被引文献25

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部