期刊文献+

浮摆式波能发电装置浮体系统的数值模拟 被引量:2

Numerical simulation of buoy system in floating and pendular-type wave energy converter
原文传递
导出
摘要 描述了浮摆式波能发电装置中浮体系统的收集原理,并对浮体系统的具体结构参数进行说明;在Workbench平台DesignModeler模块的基础上,对浮摆式波能发电装置中的浮体系统进行建模;对仿真过程中AQWA用到的基本方程、初始条件和需注意的事项进行了分析说明;并基于AQWA水动力学计算软件,对浮体的附加质量、辐射阻尼和RAO值进行计算,分析模拟了三种变化波况下浮体的运动响应情况,对浮箱的最大采集效率进行估算。仿真计算结果发现:1浮体的垂荡振幅大于浮箱的垂荡振幅,辐射阻尼随波浪频率的增大而增大,附加质量随波浪频率增大而缓慢减小;2周期和波高分别影响垂荡波形图的宽度和高度,周期较小时,应该注意锚链的疲劳断裂;3浮箱的最大采集效率为42.8%。 Energy-collection principle and parameters of floating-body system in a floating and pendular-type wave power generation device are described. A mathematical model of this system is developed based on the DesignModeler module in Workbench software platform, and details of initial conditions, basic equations, and precautions for simulation, are presented in this paper. The added mass, radiation damping, and RAO values of the floating body are calculated and its movement responses under three wave conditions are simulated based on AQWA software. The energy-collection efficiency of a buoyancy tank is also estimated. The results show that the heave amplitude of floating body is larger than that of buoyancy tank. With wave frequency increasing, the radiation damping of floating body increases while its added mass decreases. The wave period and wave height have effects on the width and height of heave waveform chart respectively, and fatigue fracture the anchor chain should be paid more attention when wave period is shorter. The maximum energy-collection efficiency of the buoyancy tank is 42.8%.
出处 《水力发电学报》 EI CSCD 北大核心 2014年第5期221-227,共7页 Journal of Hydroelectric Engineering
基金 国家海洋局海洋可再生能源专项(XMME2011BL02) 国家自然科学基金项目(51209104)
关键词 浮摆式波能发电装置 浮体系统 AQWA软件 数值仿真 floating and pendular-type wave power generation device floating-body system AQWA numerical simulation
  • 相关文献

参考文献9

  • 1Clement A, Macullen P, Falcao A, et al. Wave energy in Europe: current status and perspectives [J]. Renewable and Sustainable Energy Reviews, 2002,(6):405-431.
  • 2Simon L, Mats L. Offshore wave power measurements-A review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4274-4285.
  • 3Masaaki I, Yukihisa W, Hirotaka O. Development of an offshore floating type wave power energy converter system "mighty whale" [J]. Science & Technology in Japan, 1997,60(15): 28-30.
  • 4Vicinanza'D, Margheritini L, Contestab'ile P, et al. Sea wave slot-cone generator: an innovative caisson breakwaters for energy production [C]//Coastal Engineering 2008-Proceedings of the 31st International Conference. Hamburg: World Scientific Publishing and Imoerial College Press, 2008: 3694-3705.
  • 5刘臻,HYUN Beom-Soo,HONG Keyyong.Numerical Study of Air Chamber for Oscillating Water Column Wave Energy Convertor[J].China Ocean Engineering,2011,25(1):169-178. 被引量:7
  • 6Cummins W.E. The impulse response function and ship motions [J]. DTMB Report 2001,(3): 191-198.
  • 7贺五洲,袁亨亮,耿进柱.摇板式造波机生成的长峰规则波[J].水力发电学报,2002,21(E01):146-152. 被引量:6
  • 8M.E麦考密克(著),许适(译).海洋波浪能转换[M].北京:海洋出版社,1985:48-63.
  • 9陈文创,张永良.筏式波浪能装置波能转换液压能效率的数值研究[J].水力发电学报,2013,32(5):191-196. 被引量:13

二级参考文献14

  • 1陈红霞,华锋,袁业立.中国近海及临近海域海浪的季节特征及其时间变化[J].海洋科学进展,2006,24(4):407-415. 被引量:66
  • 2梅强中.水波动力学[M].北京:科学出版社,1984.230-234.
  • 3李嘉.简单Green函数方法.哈尔滨船舶工程学院博士学位论文[M].,1987..
  • 4黄祥鹿.海洋工程模型试验技术[J].中国造船,1995,:108-125.
  • 5Pelamis-technology. http://www, pelamiswave, com/ pelamis-technology.
  • 6E. ON at EMEC. http:www, pelamiswave, com/our- projects/project/1/E. ON-at-EMEC.
  • 7Dalton G J, Alcorn R, Lewis T. Case study feasibility analysis of the Pelamis wave energy convertor in Ireland,Portugal and North America [J]. Renewable Energy, 2010, (35): 443-455.
  • 8Faleao de O, Ant6nio F. Wave energy utilization: A review of the technologies [ J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 899-918.
  • 9贺五洲,李云波.摇板式造波机所造二维规则波波形的频域二阶解[J].哈尔滨船舶工程学院学报,1990,11(4):355-371. 被引量:4
  • 10张文喜,叶家玮.摆式波浪能发电技术研究[J].广东造船,2011,30(1):20-22. 被引量:17

共引文献23

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部