摘要
通过对双液压缸同步控制系统的研究,把神经网络控制与传统PID控制相结合,提出一种单神经元PID控制策略,同时通过有监督Delta学习规则对神经元连接权系数进行调整,以控制同步精度。研究结果表明,所提出的控制方案具有较高的同步控制精度,有一定参考价值。
Dual hydraulic cylinders through synchronous control system research, the neural network control with a combination of traditional PID control, propose a single neuron PID control strategy, through a supervised learning rule on neuronal delta connection weights to be adjusted to control synchronization accuracy. The results show that the proposed control scheme with high precision synchronization control, there is a certain reference value.
出处
《液压气动与密封》
2014年第7期45-47,共3页
Hydraulics Pneumatics & Seals
关键词
液压同步
神经网络
PID控制
hydraulic synchronization
neural network
PID control