期刊文献+

基于奇异系统的中枢疲劳脑电信号分析 被引量:4

Mental Fatigue Electroencephalogram Signals Analysis Based on Singular System
原文传递
导出
摘要 本文提出利用奇异值分解提取最大主分量贡献率和累积贡献率95%所需的主分量个数,作为疲劳脑电图(EEG)的特征指标,研究它们在不同中枢疲劳状态下的变化规律。结果表明,随着中枢疲劳程度的加深,前额叶、额叶和中央区EEG信号的最大主分量贡献率显著增加(P<0.05),累积贡献率95%所需的主分量个数显著减少(P<0.05)。EEG信号奇异系统分解参数作为评价中枢疲劳的一种有效特征,在中枢疲劳研究中具有较大的应用价值。 In the present paper,the contribution of the largest principal component and the number of principal component needed for accumulative contribution 95%are selected as indices of electroencephalogram(EEG)in mental fatigue state in order to investigate the relationship between these parameters and mental fatigue.The experimental results showed that the contribution of the largest principal component of EEG signals increased in the prefrontal,frontal and central areas,while the number of principal component needed for accumulative contribution decreased by95% with the increasing mental fatigue level.The parameters of singular system of EEG signals can be regarded as useful features for the estimation of mental fatigue and have larger application value in the study of mental fatigue.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第5期1132-1134,1138,共4页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61302011 81271659) 中国博士后科学基金面上资助项目(2014M552348)
关键词 中枢疲劳 脑电图 奇异系统分析 最大主分量 mental fatigue electroencephalogram singular system analysis the largest principal component
  • 相关文献

参考文献10

  • 1YANG B,XIAO W, LIU X F, et al. Mental fatigue impairspre-attentive processing: a MMN study [J]. Neurosci Lett,2013,532(4): 12-16.
  • 2胡文东,马进,韩文强.飞行疲劳的预防和监测手段[J].中国临床康复,2004,8(3):542-543. 被引量:36
  • 3LIM J, QUEVENCO F C,KWOK K. EEG alpha activity isassociated with individual differences in post-break improve-ment [J]. Neuroimage,2013,76(1): 81-89.
  • 4LIN C F,ZHU J D. Hilbert-Huang transformation-basedtime-frequency analysis methods in biomedical signal applica-tions [J]. Proc Inst Mech Eng Hf 2012,226(3) : 208-216.
  • 5HUANG N E, SHEN Z,LONG S R. A new view of nonlin-ear water waves: the Hilbert spectrum [J], Annu Rev FluidMech, 1999,31: 417-457.
  • 6PACHORI R B,BAJAJ V. Analysis of normal and epilepticseizure EEG signals using empirical mode decomposition [J].Comput Methods Programs Biomed, 2011, 104(3) : 373-381.
  • 7刘建平,郑崇勋,张崇.基于非线性回归系数的中枢疲劳脑电的幅度耦合分析[J].中国医疗器械杂志,2009,33(4):259-261. 被引量:4
  • 8LIU J P, ZHANG C, ZHENG C X. Estimation of the corticalfunctional connectivity by directed transfer function duringmental fatigue [J], Appl Ergon, 2010,42(1) ; 114-121.
  • 9刘建平,张崇,郑崇勋,于晓琳.基于多导脑电复杂性测度的脑疲劳分析[J].西安交通大学学报,2008,42(12):1555-1559. 被引量:15
  • 10VIDULICH M A. The mental psychology of subjective men-tal workload [M]//HANCOCK P A, MESHKATI N. Hu-man mental workload. Amsterdam: North-Holland,1988.219-229.

二级参考文献31

  • 1李锦,宁新宝.短时心率变异性信号的基本尺度熵分析[J].科学通报,2005,50(14):1438-1441. 被引量:24
  • 2吴国兴.国外航天工效学研究现状与展望[J].载人航天信息,1995(3):19-22. 被引量:2
  • 3曹雪亮,苗丹民,刘练红.脑力疲劳评定方法现状[J].第四军医大学学报,2006,27(4):382-384. 被引量:27
  • 4赵南,刘小峰,王素品,万明习,刘菲.基于Tsallis熵和近似熵的认知事件相关电位动态复杂度分析[J].西安交通大学学报,2007,41(2):245-249. 被引量:5
  • 5葛盛秋 姚永祥 金兰军 等.国际航班任务中机组人员临界闪光融合频率测试结果分析 [J].中华航空航天医学杂志,1999,10(2):120-120.
  • 6魏红漫 张建军.飞行疲劳及其研究进展 [J].中华航空航天医学杂志,2000,11(4):259-259.
  • 7MURATA A, TAKASAWA Y, TAKASAWA Y. Evaluation of mental fatigue using feature parameter extracted from event-related potential [J]. International Journal of Industrial Ergonomics, 2005, 35(8) : 761 -770.
  • 8JUNG T P, MAKEIGG S, STENSMO M. Estimating alertness from the EEG power spectrum [J].IEEE Trans on Biomedical Engineering, 1997, 44 (1): 60-69.
  • 9BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series [J]. Phys Rev Lett, 2002,88(17): 174102.
  • 10LI Zengyong, JIAO Kun, CHEN Ming, et al. Effect of magnitopuneture on sympathetic and parasympathetic nerve activities in healthy drivers-assessment by power spectrum analysis of heart rate variability [J]. European Journal of Applied Physiology, 2003, 88(4/ 5) : 404-410.

共引文献51

同被引文献47

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部