期刊文献+

人工合成甘蓝型油菜S_0-S_3代DNA及cDNA的AFLP分析 被引量:1

AFLP Analysis on DNA and cDNA in S_0-S_3 Generation of Artificially Synthetic Brassica napus
原文传递
导出
摘要 为研究人工合成甘蓝型油菜早期世代基因组及表达水平的遗传变异规律,本研究利用AFLP(扩增片段长度多态性)和cDNA-AFLP分子标记技术,以人工合成甘蓝型油菜的亲本、S0代、S3代植株为材料,用26对引物进行扩增。结果表明:S3世代在基因组水平共发生了6.33%的变异,其中发生在A基因组和C基因组上的变异条带分别占总扩增条带的1.68%和1.81%,不确定变异条带占总扩增条带的2.84%;S3世代在表达水平共发生了81.34%的变异,其中发生在A基因组和C基因组的变异条带分别占总扩增条带的16.36%和21.20%,30条变异条带来源于AC共有条带,占总扩增条带的6.91%;不确定变异条带占总扩增条带的36.87%。本研究结果说明人工合成甘蓝型油菜S3代基因组水平和表达水平均发生了一定程度的变异,其中表达水平的变异率较高,此外,基因组水平和表达水平的变异均倾向于发生在C基因组上。 In order to analyse the genetic variation of genome and expression levels of Artificially Synthetic Brassica napus in the early generations, the DNA and cDNA of the parents, S0 and S3 generations of the Artifi- cially Synthetic Brassica napus were examined with 26 pairs of AFLP (amplified fragment length polymorphism) primer pairs. The results showed that 6.33% variation of genome occurred in S3-generation, which accounted for 1.68% and 1.81% of total amplified bands on A and C genomes, respectively. The bands, whose the variation origin were uncertain, accounted for 2.84% of total amplified bands; 81.34% variation was observed on cDNA level in S3-generation, The variation bands from the A and C genomes accounted for 16.36% and 21.20% of total amplified bands, respectively. 30 variation bands were from shared bands by A and C genomes, accounting for 6.91% of total amplified bands. The bands, whose the variation origin were uncertain, accounted for 36.87% of total amplified bands. As a whole, the results of this study show that the Artificially Synthetic Brassica nopus's S3-generation occurred a certain degree of variation in genome level and cDNA level, with the cDNA level occurring higher variation rate. Furthermore, the variation of genome level and expression level tended to occur on the C genome.
出处 《分子植物育种》 CAS CSCD 北大核心 2014年第5期895-902,共8页 Molecular Plant Breeding
基金 十二五国家科技支撑计划项目(2011BAD35B04)资助
关键词 人工合成甘蓝型油菜 CDNA-AFLP 基因表达 遗传变异 Artificially Synthetic Brassica napus cDNA-AFLP Gene Expression Genetic Variation
  • 相关文献

参考文献27

  • 1Adams K.L., and Wendel J.F., 2005, Polyploidy and genome evo-lution in plants, Curr. Op in. Plant Biol” 8(2): 135-141.
  • 2Allard R.W., Garcia P., Saenz-de-Miera L.E., and de-la-Vega M.P., 1993, Evolution of multilocus genetic structure in Avenahirtula and A vena barbatai Genetics, 135(4): 1125-1139.
  • 3Attia T.,and Rijbbelen G.,1986,Cytogenetic relationship withincultivated Brassica analyzed in amphihaploids from the threediploid ancestors, Can. J. Genet. Cytol.,28(3): 323-329.
  • 4Bachem C.W., van der Hoeven R.S., de Bruijn S.M., VreugdenhilD.,Zabeau M., and Visser R.G,,1996, Visualization of dif-ferential gene expression using a novel method of RNA fin-gerprinting based on AFLP: analysis of gene expression dur-ing potato tuber development, Plant J., 9(5): 745-753.
  • 5Breyne P., Dreesen R.,Cannoot B., Rombaut D., Vandepoele K.,Rombauts S” Vanderhaeghen R., Inz6 D” and Zabeau M.,2003, Quantitative cDNA-AFLP analysis for genome-wideexpression studies, Mol. Genet. Genomics, 269(2): 173-179.
  • 6Chen Z.J.,and Pikaard C.S., 1997,Epigenetic silencing of RNApolymerase I transcription: a role for DNA methylation andhistone modification in nucleolar dominance, Genes Dev.,11(16):2124-2136.
  • 7Cheung F_,Trick M., Drou N.,Lim Y.P., Park J.Y., Kwon S.J.,Kim J.A., Scott R., Pires J.C., Paterson A.H., Town C. andBancroft I_,2009, Comparative analysis between homoeolo-gous genome segments of Brassica napus and its progenitorspecies reveals extensive sequence-level divergence, PlantCell, 21(7): 1912-1928.
  • 8Comai L.,Tyagi A.P., Winter K.,Holmes-Davis R.,Reynolds S.H.,Stevens Y.,and Byers B.,2000,Phenotypic instabilityand rapid gene silencing in newly formed Arabidopsis al-lotetraploids, Plant Cell,12(9): 1551-1567.
  • 9Cui L” Wall P.K., Leebens-Mack J.H., Lindsay B.G., Soltis D.E.,Doyle J.J., Soltis P.S., Carlson J.E., Arumuganathan K.,Ba-rakat A., Albert V.A., Ma H.,and dePamphilis C.W., 2006,Widespread genome duplications throughout the history offlowering plants, Genome Res., 16(6): 738-749.
  • 10Gaeta R.T., and Chris Pires J., 2010,Homoeologous recombina-tion in allopolyploids: the polyploid ratchet, New Phytol.,186(1): 18-28.

二级参考文献55

  • 1谢荣,何志水,刘芳华,邹华松,朱家璧,俞冠翘.应用cDNA-AFLP技术鉴定紫花苜蓿(Medicago sativa)根瘤发育相关基因[J].科学通报,2006,51(15):1794-1801. 被引量:6
  • 2秘彩莉,张学勇,温小杰,刘旭.利用cDNA-AFLP技术获得小麦耐盐性相关基因TaVHA-C[J].中国农业科学,2006,39(9):1736-1742. 被引量:20
  • 3路运才,石云素,宋燕春,黎裕,王天宇.玉米苗期水分胁迫下相关基因差异表达研究[J].玉米科学,2006,14(3):78-82. 被引量:11
  • 4Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science, 1992(257) :967-971.
  • 5Baehem C W B ,Van der Hoeven R S , de Bruijn S M, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development [J]. The Plant Journal, 1996,9 (5): 745-753.
  • 6BachemCWB ,Oomen RJ FJ ,Visser R G F. Transcript imaging with cDNA-AFLP: a step-by-step protocol[J]. Plant Molecular Biology Report,1998(16):157-173.
  • 7McClelland M, Mathieu-Daude F, Welsh J. RNAfingerprinting and differential display using arbitrarily primered PCR [J]. Trends Genet,1995(11):242-246.
  • 8Money T , Reader S, Qu L J, Dunford R P, Moore G, Qu L J. AFLP-based mRNA fingerprinting[J]. Nucleic Acids Research,1996(24) :2616-2617.
  • 9Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. Amplified restriction fragment length polymorphism based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence[J]. Biochemical and Biophysical Research Communications, 1997 (234):516-521.
  • 10Cooke R , Ragnal M,Laudie M, et al. Further progress towards a catalogue of Arabidopsls genes:analysis of a set of 5000 nonredundant EST[J]. The Plant Journal, 1996,9 ( 1 ) : 101-124.

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部