期刊文献+

日光辐射光还原合成左旋多巴胺功能化的荧光发射的银纳米簇和铁离子检测 被引量:1

Synthesis of DOPA-Functionalized Fluorescent Silver Nanoclusters via Sunlight Photo-Reduction for Ferric Ion Assay
下载PDF
导出
摘要 以左旋多巴胺(L-3,4-dihydroxyphenylalanine,DOPA)为稳定剂,采用日光辐射光还原法,合成了强荧光发射的银纳米簇(silver nanoclusters,Ag NCs)。透射电镜分析表明,所合成的Ag NCs表现亚纳米非晶态结构。Ag NCs在可见-近红外波长范围内(400~750 nm)有明显光吸收带,最大荧光激发和发射峰分别为550和630 nm,荧光量子产率为2.3%(相对于罗丹明B)。Ag NCs的荧光强度与合成时的日光辐射时间、DOPA浓度以及pH值等因素有关。进一步优化了合成Ag NCs的条件。基于荧光猝灭原理,所合成的DOPA功能化的Ag NCs能选择性地灵敏响应Fe^3+。修饰在Ag NCs表面的配体DOPA能够选择性地结合Fe^3+,导致Ag NCs显著聚集,伴随荧光猝灭。Ag NCs具有的较高量子产率和红荧光发射特性,有利于提高Fe^3+的分析灵敏度。 Highly fluorescent silver nanoclusters(Ag NCs) are synthesized by a facile sunlight photo-reduction approach where L-3, 4-dihydroxyphenylalanine(DOPA) serves as stabilizers. TEM analyses reveal that the asprepared Ag NCs is subnanoscaled and noncrystalline. Such Ag NCs possess significant absorption in visible and near-infrared wavelength range of 400~750 nm, and fluoresce at 630 nm(maximum emission) when excited at550 nm with a quantum yield(QY) of 2.3%(referred to Rhodamine B). The fluorescence intensity highly depends on the synthesis conditions, such as sunlight irradiation time, the DOPA concentration and pH value. Thus the conditions for synthesis of Ag NCs have been further optimized. Moreover, such DOPA-functionalized Ag NCs can sensitively and selectively response ferric ions on the basis of fluorescence quenching. The specific coordination between ferric ions and the DOPA ligands, which stabilizes the as-prepared Ag NCs, allows aggregation of the silver nanoclusters and concomitant significant fluorescence quenching. Both the high brightness and the red-emission of the as-formed Ag NCs provide higher sensitivity for Fe^3+assay.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2014年第10期2341-2346,共6页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.21375036) 理论与分子模拟教育部重点实验室开放基金(No.E21201)资助项目
关键词 日光辐射光还原 银纳米簇 荧光 铁离子 sunlight photo-reduction silver nanoclusters fluorescence ferric ions
  • 相关文献

参考文献22

  • 1Cheng Y, Yin L, Lin S’ et al. J. Phys. Chem. C, 2011,115(11):4425-4432.
  • 2Roh J, Umh H N, Sung H K, et al. Colloids Surf. At 2012,415:449-453.
  • 3Mai Hard M, Huang P R, Brus L. Nano Lett.,2003,3(11):1611-1615.
  • 4Diez 1, Has R H A. Nanoscale,2011,3(5): 1963-1970.
  • 5Yau S H, Vamavski 0, Goodson T,III. Acc. Chem. Res.2013,46(7):1506-1516.
  • 6Qian H, Zhu M, Wu Z, et al. Acc. Chem. Res., 2012,45(9):1470-1479.
  • 7Jin R. Nanoscale, 2010,2(3):343-362.
  • 8Li Y, Gao Y. Chin. Sci. Bull. 2014,59(3):239-246.
  • 9Li G, Jin R. Acc, Chem. Res. 2013,46(8):1749-1758.
  • 10LinC A J, Lee C H, Hsieh J T,et aL J. Med. Biol. Eng.2009,29(6):276-283.

二级参考文献30

  • 1Bimalendu A, Arindam B. Chem. Mater., 2010,22:4364- 4371.
  • 2Link S, Elsayed M A. J. Phys. Chem. B, 1999,103:6410- 8426.
  • 3XIA Xiao-Dong, YI Ping-Gui. Chinese J. lnorg. Chem.(Wuji Huaxue Xuebao), 2009,25(7):1320-1322.
  • 4XIA Xiao-Dong, YI Ping-Gui, YU Xian- Yong. Chin. J. Appl. Chem. (Yingyong Huaxue), 2009,26( 12): 1456-1460.
  • 5ZHANG Pu , WANG Yan, LIU Zhong-De , et al. Scientia Sinica Chimica (Zhongguo Kexue), 2011,41(6):1037-1043.
  • 6Zheng J, Nicovich P R, Dickson R M. A nnu. Re. Phys. Chem.. 2007.58:409-431.
  • 7Xie J, Zheng Y, Ying J Y. J. Am. Chem. Soc., 2009,131: 888-889.
  • 8Negishi Y, Chaki N K, Shichibu Y, et al. J. A m. Chem. Soc., 2007,129(37): 11322-11323.
  • 9Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005,127(14):5261-5270.
  • 10Grolhn F, Bauer B J, Akpalu Y A. Macromolecules, 2000,33:6042-6050.

共引文献3

同被引文献17

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部