期刊文献+

运动性肌肉疲劳诱发拮抗肌活动变化的特征及机制研究现状与思考 被引量:6

下载PDF
导出
摘要 中枢神经系统对主动肌与拮抗肌的活动控制是实现肢体协同运动的基本生理学过程。对运动性肌肉疲劳过程中拮抗肌活动变化特征及其机制的研究是目前运动生理学研究的热点问题。本文介绍了主动肌与拮抗肌协同收缩的交互抑制与共收缩方式、"共驱动"与"异驱动"理论及交互激活与共激活的中枢控制关系模型,阐述了主动肌、拮抗肌协同收缩的神经联系和运动性肌肉疲劳过程中中枢与外周的变化特点及相关联系,并对国内外有关运动性肌肉疲劳诱发拮抗肌活动变化特征及机制的研究成果进行了总结归纳。结合有关运动性肌肉疲劳的中枢与外周变化特点及主动肌、拮抗肌协同收缩的神经生理学研究结果,对运动性肌肉疲劳过程中拮抗肌活动变化的潜在机制及未来研究需要关注的几个问题进行了探讨与思考。
出处 《中国运动医学杂志》 CAS CSCD 北大核心 2014年第7期735-745,共11页 Chinese Journal of Sports Medicine
基金 中央高校基本科研业务费专项资金资助(1430219025) 同济大学青年英才计划项目资助 国家自然科学基金项目资助(11302154) 上海体育学院研究生教育创新基金资助(YJSCX201107)
  • 相关文献

参考文献54

  • 1王健,杨红春,刘加海.疲劳相关表面肌电信号特征的非疲劳特异性研究[J].航天医学与医学工程,2004,17(1):39-43. 被引量:23
  • 2张海红,王健.双侧屈伸肘运动中主动肌与拮抗肌的表面肌电图变化[J].中国运动医学杂志,2009,28(4):431-435. 被引量:9
  • 3Sherrington CS.Reciprocal innervation of antagonist muscles.Fourteenth note.On double reciprocal innervation.Proc R Soc Lond B Bioi Sci,1909,91:249-268.
  • 4De Luca CJ,Mambrito B.Voluntary control of motor units in human antagonist muscles:coactivation and reciprocal activation.J Neurophysiol,1987,58(3):525-542.
  • 5De Luca CJ,Erim Z.Common drive in motor units of a synergistic muscle pair.J Neurophysiol,2002,87(4):2200-2204.
  • 6Baratta R,Solomonow M,Zhou B H,et al.Muscular coactivation.The role of the antagonist musculature in maintaining knee stability.Am J Sports Med,1988,16(2):113-122.
  • 7Kotzamanidis C.Are the antagonist muscles fatigued during a fatigue task of agonist muscles?Isokinet Exerc Sci,2004,12(3):167-171.
  • 8Gribble P L,Mullin L I,Cothros N,et al.Role of cocontraction in arm movement accuracy.J Neurophysiol,2003,89(5):2396-2405.
  • 9王健,方红光,杨红春.运动性肌肉疲劳的表面肌电非线性信号特征[J].体育科学,2005,25(5):39-43. 被引量:53
  • 10Andersen B,Westlund B,Krarup C.Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.J Physiol,2003,551(1):345-356.

二级参考文献164

共引文献140

同被引文献54

  • 1华英汇,陈世益,刘广奇,封旭华,李淑红.髌腱末端病运动员等速运动中股四头肌表面肌电研究[J].中国运动医学杂志,2007,26(2):231-234. 被引量:10
  • 2Carregaro R, Cunha R, Oliveira CG, et al. Muscle fatigue and metabolic responses following three different antagonist pre-load resistance exercises.J Electromyogr Kinesiol.2013; 23(5): 1090-1096.
  • 3Beck TW, Housh T J, Johnson GO, et al. Mechanomygraphic and electromyographic time and frequency domain responses during submaximal to maximal isokinetic muscle actions of the biceps brachii. Eur J Appl Physiol.2004;92(3): 352-359.
  • 4Rodriguez Jimenez S, Benitez A, Garcia Gonz&lez MA, et al. Effect of vibration frequency on agonist and antagonist arm muscle activity.Eur J Appl Physiol. 2015;115(6):1305-1312.
  • 5Torrado P, Cabib C, Morales M, et al. Neuromuscular Fatigue after Submaximal Intermittent Contractions in Motorcycle Riders.lnt J Sports Med.2015;36(3):96-99.
  • 6Plautard M, Guilhem G, Cornu C, et al.Time-course of performance changes and underlying mechanisms during and after repetitive moderately weight-loaded knee extensions. J Electromyogr Kinesiol. 2015;25(3):488-94.
  • 7Losher NW, Creswell GA,Thorstensson A. Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man. J Physiol.1996;491(1): 271-280.
  • 8Duchateau J, Baudry S. The neural control of coactivation during fatiguing contractions revisited. J Electromyogr Kinesiol. 2014; 24(6):780-788.
  • 9Kellis E, Zafeiridis A, Amiridis IG. Muscle coactivation before and after the impact phase of running following isokinetic fatigue.J Athl Train.2011 ;46(1):11-19.
  • 10Weavil JC, Sidhu SK, Mangum TS, et al. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.Am J Physiol Regul Integr Comp Physiol. 2015; 308(12):998-1007.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部