期刊文献+

白令海Navarinsky海底峡谷地震剖面解译

Interpretation to the seismic profile of Navarinsky Canyon,Bering Sea
下载PDF
导出
摘要 第五次北极科学考察在北极区的白令海首次进行了高分辨率单道地震作业。Navarinsky峡谷头部测线BL11-12剖面中部识别出不对称沙波,陡的一面朝向陆架,波高约为9m、波长约为882m。结合站位U1345的沉积速率及站位U1344表层纵波速率推测沙波沉积可以追溯到中更新世(距今约0.258Ma),同时近陆架的洼地逐渐填平。将地层分为3个沉积层,分析沉积物变化情况,结合0.25Ma以来白令海海平面变化历史,推测最大海退事件对应的界面。结合沙波的地理位置及海平面变化情况,认为内波对沙波的形成起主要作用。 High resolution single channel seismic operation was carried out in the Bering Sea during the 5th Chinese National Expedition.Asymmetric sand waves were identified on line BL11-12 seismic profile in the head of Navarinsky Canyon.The steep faces of asymmetric sand waves were on-shelf direction,the averaged wave height was 9m and length was 882 m.There was a sedimentary depression at the end of line BL11-12 seismic profile.Combined the sedimentation rate of site U1345 and Vp of superficial sediment at site U1344,Infered that sand waves began deposit and sedimentary depression was filled since the Middle Pleistocene(about 0.258Ma).Stratum was divided into three sediments.Analyzing changes of grain size on the profile,we can speculate the surface relating to the maximum regression combined with the change of the bering sea level.Taking every aspect into consideration,draw conclusion that sand waves formed during the low sea level in Middle Pleistocene,and internal wave played a significant role.
出处 《海洋学报》 CAS CSCD 北大核心 2014年第10期61-68,共8页
基金 南北极环境综合考察与评估专项(CHINARE 2012-03-03) 中国极地科学战略研究基金(20100210) 海洋公益性行业专项经费项目(200905024-3)
关键词 Navarinsky海底峡谷 地震剖面 沙波 Navarinsky Canyon seismic profile sand waves 5th Chinese National Arctic Expedition
  • 相关文献

参考文献20

  • 1刘建勋.提高海上单道反射地震记录信噪比和分辨率的方法技术[J].物探化探计算技术,2007,29(S1):116-120. 被引量:19
  • 2Karl H A, Carlson P R. Textural variation of surficial bottom sediment[R]. US geology survey open-file report 84-89, 1984: 17-24.
  • 3Karl H A, Cacchione D A, Carlson P R. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky canyon head, bering sea[J]. Journal of sedimentary petrology, 1984, 56(5):706-714.
  • 4Hughes F W, Coachman L K, Aagaard K. Circulation, transport and water exchange in the western Bering Sea[J]. Oceanography of the Bering Sea, 1974 (2): 59-98.
  • 5Takenouti A Y, Ohtani K. Currents and water masses in the Bering Sea: A review of Japanese work[J]. Oceanography of the Bering Sea, 1974(2): 39-57.
  • 6Kinder T H, Coachman L K, Galt J A.The Bering Slope Current System[J]. Physical oceanography, 1975, 5:231-244.
  • 7Kinder T H, Schumacher J D. Circulation over the continental shelf of the southeastern Bering Sea[J]. The eastern Bering Sea shelf: oceanography and resources, 1981, 1: 53-75.
  • 8Karl H A, Carlson P R. Surface and near-surface geology, Navarin basin province: Result of the 1980-81 Field Seasons[R]. U S. Geological Survey Open-Field Report 84-89, 1984: 141.
  • 9Carlson P R, Karlt H A, Edwards B D. Puzzling features in the head of Navarinsky Canyon, Bering Sea[J].Seafloor hazards and related surficial geology, Navarin basin province, northern bering sea, 1983:613-624.
  • 10Karl H A, Cacchione D A. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon Head, Bering Sea; discussion and reply[J]. Journal of Sedimentary Research, 1988, 58(4): 769-773.

二级参考文献2

  • 1列昂诺夫 山东海洋学院海洋水文气象系译.区域海洋学和海流动力学的若干问题[M].科学出版社,1961.40-237.
  • 2山东海洋学院海洋水文气象系(译),区域海洋学和海流动力学的若干问题,1961年,40页

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部