期刊文献+

AuCl_3掺杂石墨烯的电磁屏蔽特性研究 被引量:2

Research on electromagnetic shielding propertites of AuCl_3 doped graphene
下载PDF
导出
摘要 石墨烯因具备宽波段高透光性和良好的导电性而有望成为光学窗口的电磁屏蔽材料.采用AuCl3掺杂方式增加少层石墨烯薄膜的载流子浓度,降低表面电阻值.并通过拉曼光谱对掺杂前后石墨烯薄膜进行表征、对比,得到石墨烯薄膜层数、缺陷、掺杂类型及连续性方面的信息.利用各向异性介质的平面波传输线模型,着重考虑化学势对石墨烯电导率的影响,得到宽波段掺杂石墨烯的屏蔽效能曲线.实验采用屏蔽室法对转移在PET表面的石墨烯薄膜进行屏蔽效能测试,结果表明寡层(1~2层)掺杂石墨烯的平均屏蔽效能在6.7 dB左右,与计算值符合较好. Graphene with high transmittance and great conductivity at wide band is expected.to be the electromagnetic shielding materials for optical widows. At present, a large area of monolayer and hi-layer graphene was prepared by the method of chemical vapor deposition (CVD). In this way, graphene has low carrier concentration and surface grain boundary effect, which is hard to meet the actual demand of shielding. This paper we use AuC13 doped graphene to improve carrier concentration and reduce the surface resistance. Using Raman spectroscopy to measure multi points on sample surface, we obtained the situation of intrinsic and doped graphene layers, defects, doping type and continuity. Considering the influence of chemical potential on the graphene conductivity, the shielding effectiveness (SE) can be derived by the anisotropic medium plan wave transmission line model. The experiment which refers to the GJB standard is carried out on the shielding effectiveness of intrinsic and doped graphene. The result suggests that graphene films transferred on PET have average SE at about 6.7 dB, and the theoretical prediction agrees with the measured characteristics well.
出处 《光学仪器》 2014年第5期438-442,448,共6页 Optical Instruments
关键词 石墨烯 化学气相沉积 掺杂 传输线理论 屏蔽效能 graphene CVD doping transmission line method SE
  • 相关文献

参考文献13

  • 1DREYER D R,RUOFF R S,BIELAWSKI C W.From conception to realization:An historical account of graphene and some perspectives for its future[J].Angewandte Chemie International Edition,2010,49(6):9336-9345.
  • 2HU Y H,WANG H,HU B.Thinnest two-dimensional nanomaterial-graphene for solar energy[J].Chem Sus Chem,2010,3:782-796.
  • 3LI X S,CAI W W,AN J H,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312-1314.
  • 4REINA A,JIA X,HO J,et al.Large area few-layer graphene films on arbitrary substrates by chemical vapor deposition[J].Nano Letters,2009,9(1):30-35.
  • 5KIM K K,REINA A,SHI Y M,et al.Enhancing the conductivity of transparent graphene films via doping[J].Nanotechnology,2010,21(1):285205.
  • 6吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014,72(3):301-318. 被引量:158
  • 7MICHALSKI K A,MOSIG J R.Multilayered media Green’s functions in integral equation formulations[J].IEEE Transctions on Antennas and Propagation,1997,45(3):508-519.
  • 8GOMEZ-DIAZ J S,PERRUISSEAU-CARRIER J.Microwave to THz properties of grapheme and potential antenna applications[J].Antennas and Propagation,2012,3(3):239-242.
  • 9HANSON G W.Dyadic Green’s functions for an anisotropic,non-local model of biased graphene[J].IEEE Transactions on Antenna and Ropagation,2008,56(3):747-757.
  • 10LOVAT G.Equivalent circuit for electromagnetic interaction and transmission through graphene sheets[J].IEEE Transactions on Electromagnetic Compatibility,2012,54(1):101-109.

二级参考文献115

  • 1[1]IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures. IEEE Std 299 - 1997 ,21 April 1998
  • 2[2]吕仁清蒋全兴.<电磁兼容性结构设计>.东南大学出版社,1990
  • 3[3]Butler, J. Shielding effectiveness - why don' t we have a consensus industry standard? Electronics Industries Forum of New England, 1997. Professional Program Proceedings, 1997 Page(s): 29 35
  • 4[4]Lee, Y. M . Comparison of SE measurements between MIL-STD-285 and the ASTM Standard E1851., IEEE International Symposium on Electromagnetic Compatibility, Volume: 2 , 1998 ,Page(s): 1053 - 1058 .
  • 5[5]Archambeault, B. and Ramahi, O. Evaluating tools which predict the shielding effectiveness of metal enclosures using a set of proposed standard EMI modeling problems . IEEE International Symposium on Electromagnetic Compatibility, Volume: 1,1998, Page (s): 517-521 .
  • 6Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
  • 7Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Nano Lett. 2010, 10, 553.
  • 8Morell, E. S.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. Phys. Rev. B 2010, 82, 121407.
  • 9Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
  • 10Mermint, N. D. Phys. Rev. 1968, 176, 250.

共引文献167

同被引文献27

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部