期刊文献+

渠系配水优化模型和多目标遗传算法研究 被引量:10

Optimal Water Delivery Scheduling Model and Multi-objective Genetic Algorithm
下载PDF
导出
摘要 目前国内外渠道优化配水都是在下级渠道配水流量相等这一假定的基础上建立单目标优化模型,这与多数渠系的实际配水要求不符。针对这一问题,建立了下级配水渠道流量不等时的双目标优化配水模型,该模型分别以引水流量和引水时间差异最小为目标函数,并应用改进的遗传算法进行求解,确定了灌区最优轮灌组组合。实例计算结果表明该模型能够有效提高灌溉效率,减少配水渠道闸门调控次数,取得较好的配水效果。 The present optimal water delivery scheduling models are based on the assumed equal design discharges of lateral channels , which are not in accordance with practical water delivery scheduling demand in most irrigation systems .In view of this problem ,an optimal water delivery scheduling multi-objective model is established under unequal design discharges .The model ,takes both the minimum water flow rate and water diversion time difference as the goals .The improved genetic algorithm is used to solve this mod-el ,and determine the optimal combination of group rotation irrigation .The results show that the model can effectively improve the efficiency of irrigation ,decrease the times of gate control and obtain the good effect of water distribution .
出处 《中国农村水利水电》 北大核心 2014年第9期5-7,共3页 China Rural Water and Hydropower
基金 "十二五"国家科技支撑计划(2011BA29B08) 教育部 国家外国专家局"111"计划项目(B12007)
关键词 渠道配水 多目标 优化模型 遗传算法 irrigation channel optimal model multi-objective genetic algorithm
  • 相关文献

参考文献7

二级参考文献16

  • 1张智韬,李援农,陈俊英,刘俊民.基于3S技术和蚁群算法的灌区渠系优化配水[J].西北农林科技大学学报(自然科学版),2010,38(7):221-226. 被引量:11
  • 2汪志农,熊运章.灌溉渠系配水优化模型的研究[J].西北农业大学学报,1993,21(2):66-69. 被引量:20
  • 3郭宗楼,刘肇祎.灌溉系统实时配水模型[J].武汉水利电力大学学报,1996,29(2):27-32. 被引量:3
  • 4Michalewicz Z. A survey of constraint handling techniques in evalutionary computation methods[A]. Processing 4^th Annual Conference Evalutionary Programming[ C ].McDonnell J R, Reynolds R G, Fogel D B, et al. MIT Press. 1995:135 -- 155.
  • 5Fernando Jiménez, Josh L.Verdegay. Evalutionary techniques for constrained optimization problem [A].In Hans-Jürgen Zimmermann, editor, 7th European Congress Intelligent Techniques and Soft Computing(EUFIT'99)[C]. Aachen, Germany,1999.Verlag Mainz. ISBN 3-89653-808-X.
  • 6PARETO V. Cours DEconomie Politique[M]. Lausanne: F Rouge, 1896.
  • 7ZITZLER E, DEB K, THIELE L.Comparison of Multi-objective Evolutionary Algorithm: Empirical Results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
  • 8LEUNG Y W, WANG Y E. U-measure: A quality measure for multi-objective programming [J]. IEEE Transactions Oil Systems Man and Cybernetics. Part A:Systems and Humans, 2003, 3(33): 337-343.
  • 9K DEB. Muiti-objeciiveopt-imization-using evoluiion-a~y-aigorithm[M]. New York: John Wiley&Sons, Ltd, 2001.
  • 10SCHOA J. Fault tolerant design using single and multi-criteria genetic algorithms[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1995.

共引文献84

同被引文献80

引证文献10

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部