期刊文献+

一种新的DNA序列图形表达的方法

Novel method in DNA sequences graphical representation
下载PDF
导出
摘要 针对当前DNA序列图形表达模式中存在简并现象的相关问题,提出了一种新的二元符号图形表达方式。将四类碱基的编码过程看成是构成DNA序列的元素在直角坐标平面上的移动过程,以两种不同的标志符号来解决可能出现的元素重叠情况。此方案所标志的图形不存在自交现象,从而在DNA序列和图形表达之间建立了一一对应的关系。通过实例说明该方法在对无向图和有向图表达中均能有效地降低图形简并度,并引入人工代谢系统中的编码模式作为分析工具对DNA序列进行比较分析;以代谢中间物值作为参数,研究不同物种的DNA序列之间的相似性。实例分析表明,该参数能较好地表征不同物种之间的相似性程度高低,是一种简便可行的DNA序列特征的比较方法。 This paper proposed a novel representation mode based on binary-symbol for degeneracy in undirected graph and directed graph based on DNA sequences.This method transferd the coding process for four bases to the moving process of ele-ments which composed DNA sequences on the rectangular coordinates.It used two different symbols to express overlapping ele-ments in the kind of graphical representation.Graphical curve could not overlap under this mechanism.One DNA sequence had unique graphical representation and vice verse.Degeneracy in undirected graph and directed graph could be decreased in some examples by this method.As a tool,codes mode based on artificial metabolic system could be used for different DNA se-quences comparison.It researched similarity in DNA sequences in different animals based on metabolic intermediate.From the experiments it can conclude that the parameter can illustrate similarity degree among different animals and it is convenient method for discussing DNA sequences feature.
作者 胡扬 年晓红
出处 《计算机应用研究》 CSCD 北大核心 2014年第11期3221-3224,共4页 Application Research of Computers
基金 国家教育部高等学校博士学科点专项科研基金资助项目(20110162120043) 中央高校基本科研业务费资助项目(2011QNZT027)
关键词 DNA序列图形表达 DNA序列比较 代谢编码 Metabolism图形表达 人工代谢系统 DNA sequences graphical representation DNA sequences comparison metabolism codes Metabolism graphi-cal representation artificial metabolic system(AMS)
  • 相关文献

参考文献24

  • 1伍蓉,叶鑫生,傅华.生物医学基础研究领域热点与趋势——世界五大权威杂志文献分析[J].中华医学科研管理杂志,2003,16(1):40-42. 被引量:4
  • 2HARPERPM,GANIR.Amultistepandmultilevelapproachforcomputeraidedmoleculardesigh[J].ComputersandChemicalEngineering,2000,24:677-683.
  • 3刘伟,谢红卫.基于生物信息学方法发现潜在药物靶标[J].生物化学与生物物理进展,2011,38(1):11-19. 被引量:15
  • 4GATESMA.AsimplewaytolookatDNA[J].JournalofTheoreticalBiology,1986,119(3):319-328.
  • 5PENGCK,BULDYREVSV,GOLDBERGERAL,etal.Longrangecorrelationsin nucleotide sequences[J].Nature, 1992, 356(6365):168-170.
  • 6NANDYA.GraphicalrepresentationoflongDNAsequences[J].CurrentScience,1994,66(8):821.
  • 7LEONGPM,MORGENTHALERS.RandomwalkandgapplotsofDNAsequences[J].BioinformaticApplicationsinBiosciences,1995,11(5):503-511.
  • 8WUYonghui,LIEW AW,YANH,etal.DBcurve:anovel2DmethodofDNA sequence visualization and representation[J].ChemicalPhysicsLetters,2003,367(1-2):170-176.
  • 9RANDICM,VRACKOM,LERSN,etal.Novel2-DgraphicalrepresentationofDNAsequencesandtheirnumericalcharacterization[J].ChemicalPhysicsLetters.,2003,368(1-2):1-6.
  • 10JEFFREYHI.Chaosgamerepresentationofgenestructure[J].NucleicAcidResearch,1990,18(8):2163-2170.

二级参考文献143

  • 1PINEDO M. Scheduling: theory, algorithms, and systems[M]. 2nd ed. Beijing:Tsinghua University Press, 2005.
  • 2埃伯哈德.O.沃伊特.生物化学系统的计算分析[M].储炬,李友荣,译.北京:化学工业出版社,2006.
  • 3内斯托尔.V.托雷斯,埃伯哈德.O.沃伊特.代谢工程的途径分析与优化[M].修志龙,滕虎,译.北京:化学工业出版社,2005.
  • 4DAVIDSON E H. The regulatory genome-gene regulatory networks in development and evolution[ M ]. [ S. l. ] :Science Press,2007.
  • 5SANES D H, REH T A, HARRIS W A. Development of the nervous system[ M]. [ S.l. ] :Science Press,2007.
  • 6Al-HINDI H A. Approximation of a discrete event stochastic simulation using an evolutionary artificial neural network [ J ]. JKAU : Eng Sci,2004,15 ( 1 ) :125-138.
  • 7MIN H,KO H J,KO C S. A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns [ J ]. The Intemational Journal of Management Science, 2006, 34 (1) :56-69.
  • 8GOURGAND M, GRANGEON N, NORRE S. A contribution to the stochastic flow shop scheduling problem [ J ]. European Journal of Operational Research, 2003,151 (4) :415-433.
  • 9CHANG H S, GIVAN R, CHONG E K P. Parallel rollout for online solution of partially observable Markov decision processes [ J ]. Discrete Event Dynamic System: Theory and Application,2004,14 (3) :309-341.
  • 10DUNN S, PEUCKER S, PERRY J. Genetic algorithm optimisation of mathematical models using distributed computing[ J]. Applied Intelligence, 2005,23(1) :21-32.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部