期刊文献+

局部扭立方体环互连网络及其性质 被引量:1

Locally twisted cube-connected ring interconnect network and their properties
下载PDF
导出
摘要 优化网络的拓扑结构是互连网络研究的重要研究方向。局部扭立方体(locally twisted cube,LTQn)是对超立方体(hypercube,Qn)互连网络的优化变种,然而当对LTQn升级时,需要成倍地增加网络的节点,这不利于LTQn的应用和发展。为了克服LTQn这一缺陷,提出了一种新的互连网络拓扑结构:局部扭立方体环互连网络(locally twisted cube-connected ring interconnect network,LRN),给出了LRN的定义及其拓扑结构,并研究了LRN的网络直径、连接度、汉密尔顿连通性、泛圈性、路由等问题,证明了LRN是一种易于升级又具有LTQn许多优良性质的层次环互连网络(hierarchical ring interconnection networks,HRN)。 The optimization of network topology structure is an important research direction on the research of interconnection network.Locally twisted cube (LTQn )is the optimized variant of hypercube (Qn ).However,if LTQn is upgraded,it will multiply the number of nodes of the network,which goes against the application and development of LTQn .In order to solve this problem,this paper proposed a kind of new network topology structure:locally twisted cube-connected ring interconnect network (LRN).It gave the definition of LRN and its topology structure,and studied the problems on the diameter,connec-tivity,Hamilton-connectivity,pancyclicity and routing of LRN.At last it proves the LRN is a kind of hierarchical ring inter-connection networks (HRN),and it is easy to upgrade and has many excellent properties of LTQn.
出处 《计算机应用研究》 CSCD 北大核心 2014年第11期3401-3404,3408,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61363002) 国家教育部"新世纪优秀人才支持计划"专项基金资助项目(NCET-06-0756)
关键词 局部扭立方体 超立方体 汉密尔顿连通性 泛圈性 路由 locally twisted cube hypercube Hamilton-connectivity pancyclicity routing
  • 相关文献

参考文献24

  • 1SAADY,SCHULTZMH.Topologicalpropertiesofhypercube[J].IEEETransonComputers,1988,37(7):867-872.
  • 2OZGURS,MEHMETHK,BADERA.Aninherentlystabilizingalgorithmfornodetonoderoutingoverallshortestnodedisjointpathsinhypercubenetworks[J].IEEETransonComputers,2010,59(7):995-999.
  • 3WANGHongwei,WUZhibo.AnovelACObasedmulticastpathalgorithminhypercubenetworks[J].IntelligentAutomationandSoftComputing,2011,17(5):709-717.
  • 4LAIPaolien.Asystematicalgorithmforidentifyingfaultsonhypercubelikenetworksunderthecomparisonmodel[J].IEEETransonReliability,2012,61(2):452-459.
  • 5王雷,林亚平.基于超立方体环连接的Petersen图互联网络研究[J].计算机学报,2005,28(3):409-413. 被引量:20
  • 6KEMALEFE.Thecrossedcubearchitectureforparallelcomputation[J].IEEETransonParallelandDistributedSystem,1992,3(5):513-524.
  • 7MAMeijie,XUJunming.Edgepancyclicityofcrossedcubes[J].JournalofUniversityofScienceandTechnologyofChina,2005,35(3):329-333.
  • 8CULLP,LARSONSM.TheMbiuscubes[J].IEEETransonComputers,1995,44(5):647-659.
  • 9PETERKK,HSUW J,PANY.Theexchangedhypercube[J].IEEETransonParallelandDistributedSystems,2005,16(9):866-874.
  • 10CHEN Yuwei.A commenton“theexchangedhypercube”[J].IEEETransonParallelandDistributedSystems,2007,18(4):576.

二级参考文献20

  • 1LaForge L.E., Korver K.F., Fadali M.S.. What designers of bus and network architectures should know about hypercubes. IEEE Transactions on Computers, 2003, 52(4): 525~544.
  • 2Hibers P.A.J., Koopman M.R.J., van de Snepscheut J.L.A.. The twisted cube. In: Bakker J.W. et al. eds..Parallel Architectures and Languages Europe, Lecture Notes in Computer Science. Berlin/New York: Springer-Verlag, 1987, 152~159.
  • 3Chang Chien-Ping, Wang Jyh-Nan , Hsu Lih-Hsing. Topological properties of twisted cube. Information Sciences, 1999, 113 (1~2): 147~167.
  • 4Huang Wen-Tzeng, Tan J.J.M., Hung Chun-Nan, Hsu Lih-Hsing. Fault-tolerant hamiltonicity of twisted cubes. Journal of Parallel and Distributed Computing, 2002, 62(4): 591~604.
  • 5Chang Chien-Ping, Sung Ting-Yi, Hsu Lih-Hsing. Edge congestion and topological properties of crossed cubes. IEEE Transactions on Parallel and Distributed Systems, 2000, 11(1): 64~80.
  • 6Yang Ming-Chien, Li Tseng-Kuei, Tan J.J.M., Hsu Lih-Hsing. Fault-tolerant cycle embedding of crossed cubes. Information Processing Letters, 2003, 88(4): 149~154.
  • 7Das S.K., Banerjee A.K.. Hyper Petersen network: Yet another hypercube-like topology. In: Proceedings of the 4th Symposium on the Frontiers of Massively Parallel Computation, Mclean, Virginia, 1992, 270~278.
  • 8Naserasr, Reza Skrekovski, Riste. The Petersen grapg is not 3-edge-colorable: A new proof. Discrete Mathmatics, 2003, 268(1~3): 325~326.
  • 9Saxena P.C., Gupta S., Rai J.. A delay optimal coterie on the k-dimensional folded Petersen graph. Journal of Parallel Distributed Computing, 2003, 63: 1026~1035.
  • 10Howard Jay Siegel. Interconnection Networks for Large Scale Parallel Processing. New York: McGraw-Hill Publishing Company, 1990

共引文献28

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部