期刊文献+

梯度-LBP优化深度图像分析的性别人脸识别 被引量:4

Depth image analysis optimized by gradient-LBP for gender face recognition
下载PDF
导出
摘要 针对目前最先进的3DLBP人脸识别算法中仍存在特征长度大、编码不稳定等固有缺陷,提出了一种基于梯度LBP的深度图像分析算法。从各种不同方向视觉化LBP算子,计算相邻像素的深度差,产生多个有导向的深度差图像,串联合并各个深度差直方图信息,形成唯一有导向的深度差直方图。在Kinect和范围扫描仪数据库图像上的所有实验均证明了所提描述符优于3DLBP。此外,还加权合并所提描述符和灰度图像的LBPU2,在高质量3D范围扫描仪数据库图像(Texas 3DFR)和Kinect设备采集的低质量图像(EURECOM Kinect人脸数据库)上的总体平均识别率可高达96.70%。 According to the present that many inherent defects such as characteristic length and coding instability exist in the most advanced 3DLBP face recognition algorithm,this paper proposed a depth image analysis optimized by gradient-LBP.First-ly,it visualized the LBP operator from different directions.Then,it calculated the adjacent pixels’depth differences,which would produce multiple guided images of depth differences.Finally,it tandem combined histogram information of each depth difference,formed a unique oriented depth difference histogram.All experiments on the images of Kinect and range scanner im-age database prove that the proposed descriptor is better than 3DLBP.In addition,this paper also proposed the weighted combi-nation of the proposed descriptor and gray image LBPU2.Recognition accuracy of proposed descriptor on the high quality 3D range image scanner database (Texas 3DFR)and the low quality images collected by Kinect (EURECOM Kinect face data-base)experiment equipments can achieve 96.70%.
出处 《计算机应用研究》 CSCD 北大核心 2014年第11期3502-3505,3513,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61171132) 南通大学自然科学基金资助项目(12Z057)
关键词 性别人脸识别 局部二值模式 梯度-LBP 深度图像分析 加权合并 gender face recognition local binary pattern gradient-LBP depth differences weighted combination
  • 相关文献

参考文献16

二级参考文献100

  • 1阎满富,田英杰.改进的支持向量回归机[J].系统工程,2004,22(10):9-12. 被引量:7
  • 2徐全生,李美怡.人脸图像特征点的定位与提取方法的研究[J].沈阳工业大学学报,2007,29(1):90-94. 被引量:11
  • 3徐红敏,王继广.加权支持向量回归机及其在水质预测中的应用[J].世界地质,2007,26(1):58-61. 被引量:5
  • 4LANITIS A ,TAYLOR C, COOTES J T F. Toward automatic Simulation of aging effects on face images[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(4) :442-445.
  • 5YOUNG H K, NILES da V1TORIA LOBO N. Age classification from facial images [ J ]. Computer Vision and Image Undenstanding, 1999,74(1) :1-21.
  • 6GENG Xin,ZHOU Zhi-hua, SMITH-MILES K. Automatic age estimation based on facial aging patterns [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,12(29) :2234-2240.
  • 7GUNAY R, NABIYEV V V. Automatic age classification with LBP [ C ]//Proc of the 23rd International Symposium on Computer and Information Sciences. 2008:1-4.
  • 8OJALA T, PIETIKAINEN M, MAENPAA T. Mulitiresolution grayscale and rotation invariant texture classification with local binary patterns[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,24(7) :971-978.
  • 9MALLAT S. A theory for multiresotution signal decom-position: the wavelet representation[ J ]. IEEE Trans on PAMI, 1989,11 ( 7 ) : 674-693.
  • 10VAPNIK V N. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 1995 : 147-150.

共引文献97

同被引文献48

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部