期刊文献+

基于马尔科夫链修正的RBFNN模型在碾压混凝土重力坝变形预报中的应用

Application of Improved Radial Basis Function Neural Network Prediction Model with Markov Chain to Deformation Prediction of RCC Gravity Dam
下载PDF
导出
摘要 针对径向基神经网络(RBFNN)预报模型的不足,提出了一种基于马尔科夫链修正的RBFNN预报模型,以RBFNN模型的预测结果为基准,利用马尔科夫链进行误差修正,进而显著提高模型的预报精度。以某碾压混凝土重力坝的变形监测为例,建立大坝变形预报模型,并将其结果与单一的RBFNN模型的预报结果做了对比,结果表明,基于马尔科夫链修正的RBFNN预报模型精度更高,结果更符合实际。 An improved radial basis function neural network (RBFNN) prediction model with Markov chain is put forward for overcoming the shortcomings of RBFNN prediction model. Generally, the proposed model can improve the accuracy remarkably by employing the Markov chain to revise the results obtained by RBFNN model. Both the proposed model and the RBFNN model are applied to form a deformation prediction model of a gravity dam. Compared with the RBFNN model, the results show that the proposed model performs better in prediction accuracy and it accords with the actual situation.
出处 《水电能源科学》 北大核心 2014年第10期75-77,共3页 Water Resources and Power
关键词 大坝安全 预报模型 马尔科夫链 RBFNN dam safety prediction model Markov chain radial basis function neural network
  • 相关文献

参考文献7

二级参考文献17

  • 1劳期团.环境质量评价的加权灰色局势决策法[J].环境保护,1993,21(7):31-34. 被引量:9
  • 2杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究[J].西安理工大学学报,2001,17(1):25-29. 被引量:73
  • 3S M劳斯.随机过程(M)[M].北京:中国统计出版社,1997..
  • 4[3]Kennecly M,Pchua L O. Neural networks for nonlinear programming[J]. IEE E,Trans,Circuits,1988,35:554-562.
  • 5[4]Aribshahi P. Fuzzy control of backpropagation[A]. IEEE Fuzzy’96,1996.96 7-972.
  • 6[5]Derrick H,Widrow B. Neural networks for self-learning control system[J ]. IEEE Control Systems Mangzine,1990,4(1):18-23.
  • 7[6]Khalid M,Omatu S. A neural network based control scheme with an adaptive neural model reference structure[A]. IJCNN,Singapore,1991.2128-2133.
  • 8[7]Wilis N J. Artificial neural networks in process estimation and control[ J]. Automatica,1992,28:1181-1187.
  • 9[8]Luo Li,Luo Qiang,Hu Shouren. A high-speed learning algorithm for BP ne ural networks[A]. International Conference on Neural Networks and Signal Proce ssing(Vol.1)[C]. ICNNSP’95, Nanjing,1995.202-205.
  • 10[9]Aoki K,Kanezashi M. Learning algorithm for neural networks by solv ing nonlinear equations[A]. Japan:Proc of ANNPS’93,1993,461-466.

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部