期刊文献+

基于采样数据线性变换的曲线变形方法

Curve deformation based on linear transformation of sampling data
下载PDF
导出
摘要 基于采样数据的线性变换,提出了一种曲线变形的思想;设计一种以Lagrange插值为基础的曲线变形算法,并进行算法复杂度分析。该方法能实现代数曲线间的变形处理,具有普遍的适用性和较高的计算精度。通过给出数值实例,验证了算法的有效性和可行性,该算法提供了曲线变形的一种有效途径。 The solution to the problem of curve deformation by the linear transformation of sampling data is put forward. The algorithm based on the Lagrange interpolation is designed. The complexity of the algorithm is discussed. The deformation method is researched in details. The result can be used to carry out the deformation of algebraic curves. The feasibility and validity of the algorithm is demonstrated by numerical experiment. The practice has proved that it provided an efficient approach to the problem of curve deformation.
作者 何振华
出处 《计算机时代》 2014年第10期51-53,共3页 Computer Era
基金 杭州科技职业技术学院2013年度校级科研课题(HKYYB-2013-2)
关键词 采样数据 线性变换 曲线变形 LAGRANGE插值 算法 sampling data linear transformation curve deformation lagrange interpolation algorithm
  • 相关文献

参考文献8

  • 1BarrA H. Global and local deformations of solid p rimitives[J]. Computers & Graphics,1984,18(3):21-30.
  • 2Sederberg TW, Parry S R. Free2form deformation of solid geometric models[J]. Computer Graphics,1986.20(4):151-160.
  • 3Coquillart S. Extended free-form deformation: A sculptinggeometric modeling[J].Computer Graphics,1990.24(4):187-196.
  • 4Lamousin H J, Waggenspack W N. NURBS-based free-form deformation[J]. IEEE Computer Graphics and Applications, 1994.14(6):59-65.
  • 5Hus W M,Hughes J F,Kaufman H.Direct manipulation of freeform deformation[J]. Computer Graphics,1992.26(2):177-184.
  • 6Hu S M,Zhang H,Tai C Let al.Direct manipulation of FFD:Efficient explicit solutions and decomposable multiple point constraints, The Visual Computer,2001.17(6):177-184.
  • 7张慧,孙家广.基于NURBS权因子调整的FFD直接操作[J].计算机学报,2002,25(9):910-915. 被引量:7
  • 8Kalra P,Mangil A,Thalmann N M,et al.Simulation of facial muscle action based on rational free-form deformation[J].Computer Graphics Forum, 1992.11(3):59-69.

二级参考文献9

  • 1[1]Bechmann D. Space deformation models survey. Computer & Graphics, 1994, 18(4):571-586
  • 2[2]Barr A H. Global and local deformations of solid primitives. Computer Graphics, 1984, 18(3):21-30
  • 3[3]Sederberg T W, Parry S R. Free-from deformation of solid geometric models. Computer Graphics, 1986, 20(4):151-160
  • 4[4]Coquilart S. Extended free-form derformation: A sculpturing tool for 3D geometric modeling. Computer Graphics, 1990, 24(4):187-193
  • 5[5]Griessmair J, Purgathofer W. Deformation of solids with trivariate B-spline. In: Hansmann W et al eds. Proc Eurographics'89, North-Holland:Elsevier Science Publishers, 1989. 137-148
  • 6[6]Lamousin H J, Waggenspack W N. NURBS-based free-form deformations. IEEE Computer Graphics and Applications, 1994, 14(6): 59-65
  • 7[7]MacCracken R, Joy K. Free-form deformation with lattices of arbitrary topology. Computer Graphics, 1996, 30(4): 181-189
  • 8[8]Hsu W M, Hughes J F, Kaufman H. Direct manipulation of free-form deformation. Computer Graphics, 1992, 26(4): 177-184
  • 9[9]Hu S M, Zhang H, Tai C L, Sun J G. Direct manipulation of FFD: Efficient explicit solutions and decomposible multiple point constraints. The Visual Computer, 2001, 17(6): 370-379

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部