期刊文献+

烧结温度对0.5Li_2MnO_3·0.5Li[Mn_(1/3)Ni_(1/3)Co_(1/3)]O_2结构、形貌及电化学性能的影响 被引量:3

Effect of Sintering Temperature on the Structure,Morphology and Electrochemical Properties of 0.5Li_2MnO_3·0.5Li[Mn_(1/3)Ni_(1/3)Co_(1/3)]O_2
下载PDF
导出
摘要 以乙酸锂、乙酸锰、乙酸镍和乙酸钴为原料,去离子水为溶剂,乙醇酸作为配位剂,采用溶胶凝胶法分别在800℃、850℃、900℃和950℃烧结制备了0.5Li2MnO3· 0.5Li[Mn1/3Ni1/3Co1/3]O2富锂锰基固溶体粉末.采用X射线衍射(XRD)和扫描电子显微镜(SEM)表征了不同烧结温度制备的粉末的结构和形貌;并将制备的粉末材料经过涂布,冲压等工艺,在真空手套箱中组装成扣式电池.采用电池充放电测试系统以及阻抗分析仪测试了样品的循环稳定性和电化学性能.实验结果表明:在850℃烧结的粉末样品具有最佳的电化学性能.在2~4.8 V电压范围内,以0.1C大小的电流对850℃烧结的样品进行充放电测试,其首次放电容量可达240.3 mAhg^-1,首次库仑效率约为70%,50次循环后其可逆容量为148 mAhg^-1.该样品在0.2C、0.5C和1C的不同倍率下测试,得到相对应的放电容量分别为181.25 mAhg^-1、142mAhg^-1和130.7 mAg^-1. Lithium acetate,manganese acetate,nickel and cobalt acetate were used as raw materials,with deionized water as solvent,and glycollic acid as chelating agents,0.5Li2 MnO3 · 0.5 Li[Mn1/3 Ni1/3 Co1/3]O2 powders were synthesized at 800 ℃,850 ℃,900 ℃ and 950 ℃ by sol-gel method,respectively,which is a typical Li-rich solid solution cathode material.The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM).After the powders were processed with coating and punching,then were assembled into button cell in a glove box.The electrochemical properties of different samples were investigated by battery test system.The results demonstrated that the powder sintered at 850 ℃ exhibits the best electrochemical performance,the first discharge capacity reaching 240.3 mAhg^-1,while coulomb efficiency is about 70% and reversible capacity retaining 148 mAhg^-1 after 50 cycles at 0.1 C in the voltage range of 2.0~4.8 V.The corresponding discharge capacities of the different samples at 0.2 C,0.5 C,1 C are 181.25 mAhg^-1,142 mAhg^-1 and 130.7 mAhg^-1,respectively.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2014年第3期67-72,共6页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金面上项目(11472236)
关键词 配位剂 溶胶凝胶法 乙醇酸 锂离子电池 coordination agent sol-gel method glycollic acid lithium-ion battery
  • 相关文献

参考文献30

  • 1MOHANTY D,KALNAUS S,MEISNER R A,et al.Structural transformation of a lithium-rich LiL2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J].Journal of Power Sources,2013,229:239-248.
  • 2KAMAYA N,HOMMA K,YAMAKAWA Y,et al.A lithium superionic conductor[J].Nature Materials,2011,10 (9):682-686.
  • 3叶艳艳,张海朗.锂离子电池富锂正极材料Li[Li_(0.2)Ni_(0.16)Mn_(0.56)Co_(0.06)Al_(0.02)]O_2的合成和电化学性能[J].化工新型材料,2013,41(1):45-47. 被引量:4
  • 4LIN J,MU D,JIN Y,et al.Li-rich layered composite Li[Li0.2 Ni0.2 Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery[J].Journal of Power Sources,2013,230:76-80.
  • 5TABUCHI M,NABESHIMA Y,TAKEUCHI T,et al.Synthesis of high-capacity Ti-and/or Fe-substituted Li2 MnO3 positive electrode materials with high initial cycle efficiency by application of the carbothermal reduction method[J].Journal of Power Sources,2013,221:427-434.
  • 6DANIEL C.Materials and processing for lithium-ion batteries[J].Jom,2008,60 (9):43-48.
  • 7KIM D,GIM J,LIM J,et al.Synthesis of xLi2MnO3 · (1-x)LiMO2 (M=Cr,Mn,Co,Ni) nanocomposites and their electrochemical properties[J].Materials Research Bulletin,2010,45 (3):252-255.
  • 8KANG S-H,THACKERAY M M.Enhancing the rate capability of high capacity xLi2 MnO3 · (1-x) LiMO2 (M=Mn,Ni,Co) electrodes by Li-Ni-PO4 treatment[J].Electrochemistry Communications,2009,11 (4):748-751.
  • 9KARTHIKEYAN K,AMARESH S,LEE G,et al.Electrochemical performance of cobalt free,LiL2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries[J].Electrochimica Acta,2012,68:246-253.
  • 10LI J,ZHANG Y,CHEN Z,et al.High capacity 0.5Li2MnO3 · 0.5 LiNi0.33Co0.33Mn0.33O2 cathode material via a fast co-precipitation method[J].Electrochimica Acta,2013,87:686-692.

二级参考文献107

  • 1王力臻.化学电源设计.北京:化学工业出版社,2007.
  • 2Hu Y S, Guo Y G, Dorninko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv. Mater., 2007, 19(15): 1963-1966.
  • 3Numata K, Sakaki C, Yamanaka S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem. Lett., 1997(8): 725-726.
  • 4Tabuchi M, Nakashima A, Shigemura H, et al. Synthesis cation distribution,and electrochemical properties of Fe-substituted L~zMnO~ as a novel 4 V positive electrode material. J. Electrochem. Soc., 2002, 149(5): A509-A524.
  • 5Lu Z, Macneil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3.2x/3)Mn(2:3-x3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett., 2001, 4(11): A191-A194.
  • 6Lu Z, Beanlieu L Y, Donaberger R A. Synthesis, structure, and eleclrochemical behavior of Li[NiLiMn]O. J. Electrochem. Soc., 2002, 149(6): A778-A791.
  • 7Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi1/3-2x/3Mn2/3-x/3]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc., 2002, 149(7): A815-A822.
  • 8Lee D K, Park S H, Amineb K, et al. High capacity Li[Lio.2Nio.zMno.6]O2 cathode materials via a carbonate co-precipitation method. Journal of Power Sources, 2006, 162(2): 1346-1350.
  • 9Tabuchi M, Nabeshima Y, Ado K, et al. Material design concept for Fe-substituted Li2MnO3-based positive electrodes. J. Power Sources, 2007, 174(2): 554-559.
  • 10Kim J H, Park C W, Sun Y K. Synthesis and electrochemical be- havior of Li[Lio.lNio.35 xaCoxMno.55-x/2]O2 cathode materials. Solid State lonics, 2003, 164(1): 43-49.

共引文献43

同被引文献21

  • 1衷水平,赖延清,蒋良兴,田忠良,李劼,刘业翔.锌电积用Pb-Ag-Bi阳极的电化学行为[J].过程工程学报,2008,8(S1):289-293. 被引量:13
  • 2潘君益,郭忠诚.锌电积用惰性阳极材料的研究现状[J].云南冶金,2004,33(6):31-35. 被引量:22
  • 3Felder A, Prengaman R D. Lead allpys for permanent anode in the nonferrous metals industry [ J ]. JOM ,2006,58 (10) :31 -38.
  • 4Lvanov I. Incerased current efficiency of zinc electrowinning in the presence of metal Impurities by addition of organic inhibi- tors[J]. nydrometallorgy, 2004, 72( 1 ) :38 - 73.
  • 5Gurmen S, Emre M. A laboratory- scale investigation of alkaline zinc electro - winning[ J]. Minerals Enginerring, 2003,16 (6) :559 -562.
  • 6Lai Y,Jiang L, Li J, et al. A novel porous Pb -Ag anode for energy -saving in zinc electro -winning. Part li. Preparation and pilot plant tests of large size anode [J]. Hydrometallurgy, 2010,102 ( 1/4 ) : 81 - 86.
  • 7Hrussanova A, Mirkova L, Dobrev T, et al. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb - Co304, Pb-Ca-Sn, and Pb-Sb anodes for copper electrowinning: Part I[J]. Hydrometallurgy, 2004, 72(3/4): 205 -213.
  • 8Takasaki Y, Koike K, Masuko N. Mechanical properties and electrolytic behavior of Pb - Ag - Ca ternary electrodes for zinc electro- winning~ C l//Dutrizac J E. LEAD- ZINC 2000. Pittsburgh, PA, USA: Warrendale, PA, USA. 2000.599- 614.
  • 9Stefanov Y, Dobrev T. Potentiodynamic and electron microscopy investigations of lead - cobalt alloy coated lead composite an- odes for zinc electro -winning[ J ]. Transactions of the Institute of Metal Finishing, 2005, 83 (6) :296 -299.
  • 10Minarik P, Kral R, Hadzima B, et al. Substantially Higher Corrosion Resistance in AE42 Magnesium Alloy through Corrosion Layer Stabilization by ECAP Treatment [ J ]. Acta Physica Polonica, 2012, 122 ( 3 ) : 614 - 617.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部