期刊文献+

截断傅里叶级数的计算机图形化研究

Computer Graphic Study of Truncated Fourier Series
下载PDF
导出
摘要 分析傅里叶级数迭代映射的特点,以矩阵乘积的运算形式为工具,构造截断傅里叶级数对应的平面动力系统。运用蒙特卡罗搜索法选定参数向量,并通过李雅普诺夫指数确定动力系统的动力学特性,构造出周期窗口内的混沌吸引子。任意周期窗口间相应点之间的对应关系是线性的,因此构造出的图案是连续的且结构相同的。选用任意的周期窗口作为基本计算区域,提出构造出平面排列图案的算法。实验结果表明,采用文中算法可以生成大量的平面等距排列的混沌吸引子图案。 To analyze the characteristics of the iteration mapping with truncated Fourier series, this paper used the operation of matrix product as tool and constructed the planar dynamic systems with truncated Fourier series. Monte Carlo method was used to search the parameter vectors in the parameter space. The Lyapunov exponent was used to judge the characteristics of dynamical systems. We construct Chaotic attractors in the cyclic windows. It is linear, then clarifying the relationship of corresponding points between any cyclic windows. The respective images are continuous and same structures. We can choose any cyclic windows as the basic computing region, which is transferred to the plane to compose the planar tilling. Experimental results show the effectiveness of the proposed approach.
出处 《襄阳职业技术学院学报》 2014年第5期17-19,共3页 Journal of Xiangyang Polytechnic
基金 国家自然科学基金项目(61272253) 辽宁省教育厅基金项目(L2011091) 辽宁省科技厅基金项目(2013020013) 沈阳市科技局基金项目(F12-277-1-08) 沈阳建筑大学青年基金项目(2012047)
关键词 动力系统 周期窗口 截断傅里叶级数 混沌吸引子 dynamical cyclic windows truncated fourier series chaotic attractor
  • 相关文献

参考文献10

  • 1Ning Chen, Weiyong Zhu. Bud-sequnce conjecture on M fractal image and M-J conjecture between c and z planes from z4-zW+c (w=α+/β)[J]. Computers & Graphics, 1998(4):537-546.
  • 2朱伟勇,朱志良,刘向东,曾文曲,于海,曹林.周期芽苞Fibonacci序列构造M-J混沌分形图谱的一族猜想[J].计算机学报,2003,26(2):221-226. 被引量:18
  • 3Field M and Golubitsky M.Symmetry in Chaos[M].New York: Oxford University Press, 1992.
  • 4Carter N C, Eagles R L, Grimes S M, et al..Chaotic attractors with discrete planar symmetries [J].Chaos Solitions and Fractals, 1998(12) :2031-2054.
  • 5Clifford A Reiter.Fractals,Visualization and J 3rd ed. [M].Lulu: Toronto: Jsoftware, Inc., 2007.
  • 6Sprott J C. Automatic generation of strange attractors [J]. Computers & Graphics, 1993 (3):25-32.
  • 7Sun Yan-Ling,Zheng Li and Hou Jing.Construction of Planar Dynamic Systems with Function of Non-linear Angle Variables[D]. Applied Mechanics and Mechatronics Automation, 2012:1590-1595.
  • 8Chen N, Sun J, Sun Y L, et al. Visualizing the complex dynamics of families of polynomials [J].Chaos, Solitons & Fractals, 2009 (3) : 1611-1622.
  • 9陈宁,孙艳玲,孙晶.构造变基本域的P1平面对称动力系统[J].沈阳建筑大学学报(自然科学版),2008,24(6):1099-1102. 被引量:3
  • 10陈宁,孙艳玲,孙晶.变周期窗口平面动力系统的构造与可视化[J].计算机辅助设计与图形学学报,2010,22(5):784-790. 被引量:7

二级参考文献32

  • 1陈宁,金媛媛,李子川.上半平面极限映射的混沌吸引子及充满Julia集[J].沈阳建筑大学学报(自然科学版),2006,22(5):846-851. 被引量:2
  • 2陈宁,李子川,金媛媛.双曲极限圆映射的混沌吸引子及充满Julia集[J].沈阳建筑大学学报(自然科学版),2006,22(6):999-1003. 被引量:4
  • 3Escher M C. Escher on Escher. Exploring the infinite [ M]. New York: Harry N. Abrams, 1989.
  • 4Armstrong A M. Groups and symmetry [ M ]. New York: Springer, 1998.
  • 5Field M,Golubitsky M. Symmetry in chaos[ M]. New York:Oxford University Press, 1992.
  • 6Carter N, Eagles R, Grimes S. Chaotic attractors with discrete planar symmetries [ J ]. Chaos Solitions and Fractals, 1998,20 (9) : 31 - 54.
  • 7Sprott J C. Automatic generation of strange attractors [J ]. Computers & Graphics, 1993,17(3) : 25 - 32.
  • 8Reiter C A. Fractal, visualization and J [ M]. Toronto: Jsoftware, Inc. , 2000.
  • 9Ning Chen, Meng F Y. Critical points and dynamic systems with planar hexagonal symmetry [J ]. Chaos, Solitons & Fractals,2007(3) : 1027 - 1037.
  • 10Chen N,Zhu W Y.Bud-sequence conjecture on M fractal image and M-J conjecture between c and z planes from z←zw+c(w=a+iβ)[J].Computers & Graphics,1998,22(4):537-546.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部