期刊文献+

对数平均的最优凸组合界 被引量:1

Optimal convex combination bounds for logarithmic mean
下载PDF
导出
摘要 考虑对数平均、调和平均、第2类反调和平均之间的估计式,建立了对数平均关于调和平均、第2类反调和平均的最优凸组合界.这些结果都是经典平均构建的最佳双边不等式的推广和发展. The esimates among the logarithmic mean,the second contraharmonic mean and the harmonic mean were considered.The optimal convex combination bounds of the logarithmic mean in terms of the second contraharmonic mean and the harmonic mean were established.These results are extensions and developments of classical optimal bilateral inequalities.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2014年第5期471-474,共4页 Journal of Hebei University(Natural Science Edition)
基金 河北省科技厅软科学基金资助项目(11457242) 保定学院自然科学基金资助项目(2012Z06) 保定市科协课题资助项目(KX2013A21)
关键词 对数平均 调和平均 第2类反调和平均 不等式 logarithmic mean harmonic mean the second contraharmonic mean inequality
  • 相关文献

参考文献9

  • 1TOMINAGA M.Specht's ratio and logarithmic mean in the Young inequality[J].Math Inequal Appl,2004,7(1):113-125.
  • 2KAHLIG P,MATKOWSKI J.Functional equations involving the logarithmic mean[J].Z Angew Math,1996,76(7):385-390.
  • 3PITTENGER A O.The logarithmic mean in variables[J].Amer Math Monthly,1985,92(2):99-104.
  • 4STOLARSKY K B.Generalizations of the logarithmic means[J].Math Mag,1975,48:87-92.
  • 5KOUBA O.New bounds for the identric mean of two arguments[J].JIPAM.J Inequal Pure Appl Math,2008,9(3):6.
  • 6BURK F.The geometric logarithmic and arithmetic mean inequality[J].Amer Math,1987,94(6):27-528.
  • 7QI F,CUO B N.An inequality between ratio of the extended logarithmic and ratio of the exponential means[J].Taiwan Residents J Math,2003,7(2):229-237.
  • 8CARLSON B C.The logarithmic mean[J].Amer Math,1972,79:615-618.
  • 9CHU Yuming,ZONG Cheng,WANG Fendi.Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean[J].Journal Math Inequal,2011,5(3):429-434.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部