期刊文献+

一类具有饱和发生率的离散型SIS传染病模型的全局渐近稳定性

Global Asymptotically Stability of a Discrete SIS Epidemic Model with Saturation Incidence Rate
下载PDF
导出
摘要 研究一类具有饱和发生率的离散型SIS传染病模型,得到模型的基本再生数.通过比较原理以及构造适当的Lyapunov函数,证明当基本再生数R0<1时,无病平衡点是全局渐近稳定的;当基本再生数R0>1时,地方病平衡点是全局渐近稳定的. In this paper,a discrete SIS epidemic model with saturation incidence rate is investiga-ted,and the basic reproduction number of the model is derived.By the comparison principle and construction of appropriate Lyapunov functions,it is proved that if the basic reproduction number is less than unity,the disease-free equilibrium is globally asymptotically stable;if the basic re-production number is greater than unity,the endemic equilibrium is globally asymptotically sta-ble.
作者 陈辉 徐瑞
出处 《军械工程学院学报》 2014年第4期56-60,共5页 Journal of Ordnance Engineering College
基金 国家自然科学基金资助项目(11371368)
关键词 饱和发生率 离散型传染病模型 Lyapunov函数 基本再生数 discrete epidemic model saturation incidence rate Lyapunov function the basic repro-duction number
  • 相关文献

参考文献5

  • 1ENATSU Y, NAKATA Y, MUROYA Y. Global stability for a discrete SIS epidemic model with immigration of infectives[J]. Journal of Difference Equations and Applications,2012,18(11) :1913-1924.
  • 2MA Xia, ZHOU Yicang, CAO Hui. Global stability of the endemic equilibrium of a discrete SIR epidemic model[J]. Advances in Difference Equations, 2013,10 (1186) : 1687-1847.
  • 3LIZ E. A sharp global stability result for a discrete population model[J]. Mathematical Analysis and Applications, 2007,330 : 740-743.
  • 4徐文雄,张仲华,成芳.一类SIS流行病传播数学模型全局渐近稳定性[J].四川师范大学学报(自然科学版),2004,27(6):585-588. 被引量:11
  • 5李浩,滕志东,王蕾.具有时滞和非线性发生率的离散SIRS传染病模型的持久性[J].北华大学学报(自然科学版),2013,14(3):256-261. 被引量:4

二级参考文献8

  • 1Horst R. Thieme and Carlos Castillo-chaveg. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS?[J]. Siam J Appl Math,1993,53(5):1447-1479.
  • 2E Beretta, T Hara, W Ma, et al. Global Asymptotic Stability of an SIR Epidemic Model with Distributed Time Delay [ J ]. Nonlinear Anal ,2001,47:4107-4115.
  • 3W Ma,M Song. Global Stability of an SIR Epidemic Model with Time Delay[ J]. Appl Math Lett,2004,17:1141-1145.
  • 4T Zhang,Z Teng. Global Behavior and Permanence of SIRS Epidemic Model with Time Delay [ J ]. Nonlinear Anal RWA, 2008,9 : 1409-1424.
  • 5Z Teng, Y Liu, L Zhang. Persistence and Extinction of Disease in Non-autonomous SIRS Epidemic Models with Disease-induced Mortality[ J]. Nonlinear Anal,2008,69:2599-2614.
  • 6M Sekiguchi,E Ishiwata. Global Dynamics of a Discretized SIRS Epidemic Model with Time Delay [ J ]. J Math Anal Appl, 2010,371 : 195-202.
  • 7Y Enatsu,E Messina,E Russo, et al. Global Dynamics of a Delayed SIRS Epidemic Model with a Wide Class of Nonlinear Incidence Rates [J]. J Appl Math Comput,2012,39:15-34.
  • 8V L Kocic, G Ladas. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications [ M ]. Dordrecht, Boston. Kluwer Academic, 1993.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部