期刊文献+

基于RBF-HDMR的高强钢材料参数反求 被引量:2

Inverse Determination of High-Strength Steel Parameters Based on RBF-HDMR Metamodel Technique
下载PDF
导出
摘要 将RBF(radial basis function)-HDMR(high dimensional model representation)近似模型技术应用到高强钢DP600的Johnson-Cook(JC)模型参数反求中,在落锤试验测得位移-时间曲线的基础上,建立了以计算机仿真结果与试验数据之间的误差为目标输出,待求参数为设计变量的近似模型。结合遗传算法反求出DP600钢板的JC模型参数,将反求的参数输入模型,计算得到的仿真位移曲线与试验结果对比表明,该近似模型方法具有较高的精度。 The RBF(radial basis function)HDMR metomodel technique was applied to the Johnson-Cook(JC)parameter inverse determination of a high-strength steel DP600.On the basis of the displacement-time curve measured during the experiments,the metamodel was established,which took the errors between simulation results and test data as the target outputs while took the parameters as the design variables.Combined with genetic algorithm(GA),JC model parameters of DP600 was inversely determined by using the metamodel,and the prediction based on the parameters shows high degree of consensus with the test results.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第20期2801-2805,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11172097 11302266) 新世纪优秀人才支持计划资助项目(NCET-11-0131) 国家高技术研究发展计划(863计划)资助项目(2012AA111802)
关键词 应变率 参数反求 近似模型 HDMR strain rate parameter inverse metamodel high dimensional model representation(HDMR)
  • 相关文献

参考文献13

  • 1付锐,魏朗.汽车碰撞数值模拟中应变率效应问题的讨论[J].中国公路学报,1999,12(3):117-121. 被引量:18
  • 2Altenhof W, Ames W. Strain Rate Effects for Alu- minum and Magnesium Alloys in Finite Element Simulations of Steering Wheel Armature Impact Tests[J]. Fatigue Fracture of Engineering Mate- rials g Structures,2002, 25(12):1149-1156.
  • 3American Society for Testing and Materials (ASTM). ASTM Standard E8M--08 Standard Test Methods for Tension Testing of Metallic Materials IS]. West Conshohocken, PA, USA .. ASTM, 1996.
  • 4曹银锋,李光耀,钟志华.金属成型材料参数的反求技术[J].计算力学学报,2004,21(3):291-296. 被引量:14
  • 5Box G E P,Wilson K B. On the Experimental At- tainment of Optimum Condition[-J-]. Journal of the Royal Statistical Society, 1951,13 ( 1 ) : 1-45.
  • 6Lancaster P, Salkauskas K. Surfaces Generated by Moving Least Squares Methods[J]. Mathematics of Computation, 1981,37(155) .. 141-158.
  • 7Sietsma J, Dow R J F. Creating Artificial Neural Networks That Generalize[J]. Neural Networks, 1991, 4(1).. 67-79.
  • 8Franke C, Schaback R. Solving Partial Differential Equations by Collocation Using Radial Basis Func- tions[J]. Applied Mathematics and Computation, 1998,93(1) ..73-82.
  • 9Sohol I M. On Sensitivity Estimation for Nonlinear Mathematical Models[J]. Matematicheskoe Mode- lirovanie, 1990,2(1) ..112-118.
  • 10Rabitz H,Alis 0 F. General Foundations of High- dimensional Model Representations[J]. Journal of Mathematical Chemistry, 1999,25(2/3) : 197-233.

二级参考文献20

  • 1Simpson TW, Peplinski JD, Koch PN, et al. Metamodels for computer-based engineering design: survey and rec- ommendations. Engineering with Computer, 2001, 17(2): 129-150.
  • 2Kim C, Wang S, Choi KK. Efficient response surface modeling by using moving least-squares method and sensitivity. AIAA Journal, 2005, 43(11): 2404-2411.
  • 3Rabitz H, Alis OF. General foundations of highdimensional model representations. Journal of Mathematical Chemistry: 1999,25(2-3): 197-233.
  • 4Sasena M. Flexibility and efficiency enhancements for constrained global optimization with kriging approximations. [PhD Thesis]. Michigan: University of Michigan (Mechanical Engineering), 2002.
  • 5Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, 13(4): 455-492.
  • 6Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments. Statistical Science, 1989, 4(4): 409-435.
  • 7Liu YC. Optimum design of straight thin-walled box section beams for cra.shworthiness analysis. Finite Elements in Analysis and Design~ 2008, 44(3): 139-147.
  • 8付锐,学位论文,1996年
  • 9杨桂通,塑性动力学,1984年
  • 10Tarantola A. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation[M]. New York: Elsevier Science Publishers B V,1987.

共引文献41

同被引文献9

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部