期刊文献+

组合载荷作用下深海非粘结柔性管力学性能对比分析 被引量:4

Mechanical analysis of deepwater unbonded flexible riser under combined loads
下载PDF
导出
摘要 建立深海非粘结柔性管新型力学数值分析模型,分析其在复合载荷工况下的力学性能。深海非粘结柔性立管是深水资源开发的关键设备,安装成本低,适用于恶劣深海环境。然而,由于非粘结柔性管本身的结构型式复杂以及层与层之间的摩擦、接触等诸多强非线性特性,使其局部力学性能分析面临众多挑战。研究针对非粘结柔性立管特殊的结构型式,建立一个高效的数值分析模型,对其刚度进行数值求解并与实验结果进行对比,探讨了内压和拉伸、扭转、弯曲的组合载荷工况和拉扭组合载荷工况对非粘结柔性立管刚度的影响。研究表明,本文所建立的简化模型计算结果与实验结果吻合较好。此外,柔性立管所受到的内压可以在一定程度上增加非粘结柔性立管的刚度;拉扭组合载荷工况使非粘结柔性立管的拉伸刚度降低明显,而使其扭转刚度少量增加,总体上较单一载荷工况更加危险。 A new numerical analytical model is established to analyze the mechanical property of the unbonded flexible risers under combined loads. Because of their low installation costs and suitability in the adverse sea conditions, the unbonded flexible risers are the critical equipment for deep water development. However, the local mechanical property of the unbonded flexible riser is hard to analyze due to the complicated structures and the strong nonlinear property of the unbonded flexible risers. Aiming at this problem, a new efficient numerical analytical model is established to solve the stiffness of the riser, and its results are compared with the experimental results. After validating the numerical model, the effects of the combined loads on the stiffness of the unbonded flexible risers are also studied. The results show that the analytical results of the simplified numerical model agree with the experimental results. In addition, the inner pressure could increase the stiffness of the unbonded flexible risers in some degree. The tension-torsion loading case could lead to a distinguished decrease of tension stiffness, but with a little increase of torsion stiffness.
作者 姜豪 杨和振
出处 《海洋工程》 CSCD 北大核心 2014年第5期93-99,共7页 The Ocean Engineering
基金 国家自然科学基金资助项目(51009093 51379005)
关键词 非粘结柔性立管 组合载荷 深海 静力分析 unbonded flexible risers combined loads deepwater dynamic
  • 相关文献

参考文献11

  • 1Yang H Z, Zheng W Q. Metamodel approach for reliability-based design optimization of a steel catenary riser[ J ]. Journal of Marine Science and Technology, 2011,16 (2) :202-213.
  • 2Yang H Z, Wang A J. Fatigue reliability based design optimization of bending stiffener[ J]. Journal of Ship Research, 2012,56 (2) :120-128.
  • 3Feret J J, Bournazel C L. Calculation of stresses and slip in structural layers of unbonded flexible pipes [ J]. Journal of Offshore Mechanics and Arctic Engineering, 1987,109 (3) :263-269.
  • 4Roberto R J, Celso P P. A consistent analytical model to predict the structural behavior of flexible risers subjected to combined loads [ J ]. Journal of Offshore Mechanics and Arctic Engineering, 2004,126 (2) : 141-146.
  • 5McNamara J F, Harte A M. Three dimensional analytical simulation of flexible pipe wall structure [ C ]//International Conference on Offshore Mechanics and Arctic Engineering. Houston :1989.
  • 6Zhang Y, Chen B, Qiu L, et al. State of the art analytical tools improve optimization of unbonded flexible pipes for deepwater environments [ C ]//The Offshore Technology Conference. Houston : 2003 : OTC 15169.
  • 7Witz J. A case study in the cross-section analysis of flexible risrs [ J ]. Marine Structures, 1996,9 (9) :885-904.
  • 8Sousa J, Magluta C, Roitman N, et al. On the response of flexible risers to loads imposed by hydraulic collars [ J ]. Applied Ocean Research, 2009,31 (3) : 157-170.
  • 9Merino H, Sousa J, Magluta C, et al. Numerical and experimental study of a flexible pipe under torsion [ C ]//International Conference on Ocean, Offshore and Arctic Engineering. Shanghai: 2010.
  • 10Timoshenko S P, Woinowsky-Krieger S. Theory of and hells[ M]. Tokyo:McGraw-HillKogakusha, 1959.

同被引文献22

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部