期刊文献+

On Equivalence of Simple Closed Curves in Flat Surfaces

On Equivalence of Simple Closed Curves in Flat Surfaces
原文传递
导出
摘要 By explicit constructions,we give direct proofs of the following results: for any distinct homotopy classes of simple closed curves α and β in a closed surface of genus g 〉1,there exist a hyperbolic structure X and a holomorphic quadratic differential q on X such that lX(α) = lX(β),extX(α) = extX(β) and lq(α) = lq(β),where lX(·),extX(·) and lq(·) are the hyperbolic length,the extremal length and the quadratic differential length respectively.These imply that there are no equivalent simple closed curves in hyperbolic surfaces or in flat surfaces. By explicit constructions,we give direct proofs of the following results: for any distinct homotopy classes of simple closed curves α and β in a closed surface of genus g 〉1,there exist a hyperbolic structure X and a holomorphic quadratic differential q on X such that lX(α) = lX(β),extX(α) = extX(β) and lq(α) = lq(β),where lX(·),extX(·) and lq(·) are the hyperbolic length,the extremal length and the quadratic differential length respectively.These imply that there are no equivalent simple closed curves in hyperbolic surfaces or in flat surfaces.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第11期1827-1832,共6页 数学学报(英文版)
基金 Supported by NNSF for Young Scientists of China(Grant No.11101290) NNSF of China(Grant No.11071179)
关键词 Hyperbolic metric quadratic differential metric simple closed curve Hyperbolic metric quadratic differential metric simple closed curve
  • 相关文献

参考文献14

  • 1Abikoff, W.: The real analytic theory of Teichmüller space, Lecture Notes in Math., Vol. 820, Springer-Verlag, New York, 1980.
  • 2Abraham, R.: Bumpy metrics, Proceedings of Symposia in Pure Mathematics 14, American MathematicalSociety, Providence, R.I., 1970, 1-3.
  • 3Duchin, M., Leininger, C., Rafi, K.: Length spectra and degeneration of flat metrics. Invent. Math., 182(2),231-277 (2010).
  • 4Fricke, R, Klein, F.: Vorlesungen über die Theorie der Elliptischen Modulfunktionen/Automorphen funktionen,G. Teubner, Leipzig, 1896/1912.
  • 5Gardiner, F., Lakic, N.: Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, No.76, American Mathematical Society, Providence, R.I., 2000.
  • 6Horowitz, R.: Characters of free groups represented in the two-dimensional special linear group. Comm.Pure Appl. Math., 25, 635-649 (1972).
  • 7Jenkins, J.: On the existence of certain general extremal metrics. Ann. of Math. (2), 66, 440-453 (1957).
  • 8Kerckhoff, S.: The asymptotic geometry of Teichmüller space. Topology, 19, 23-41 (1980).
  • 9Leininger, C.: Equivalent curves in surfaces. Geom. Dedicata, 102, 151-177 (2003).
  • 10Liu, J. S.: On the existence of Jenkins-Strebel differentials. Bull. London Math. Soc., 36, 365-377 (2004).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部