期刊文献+

Joins of 1-Planar Graphs

Joins of 1-Planar Graphs
原文传递
导出
摘要 A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once.In this paper,we study 1-planar graph joins.We prove that the join G + H is 1-planar if and only if the pair [G,H] is subgraph-majorized by one of pairs [C3 ∪ C3,C3],[C4,C4],[C4,C3],[K2,1,1,P3] in the case when both elements of the graph join have at least three vertices.If one element has at most two vertices,then we give several necessary/sufficient conditions for the bigger element. A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once.In this paper,we study 1-planar graph joins.We prove that the join G + H is 1-planar if and only if the pair [G,H] is subgraph-majorized by one of pairs [C3 ∪ C3,C3],[C4,C4],[C4,C3],[K2,1,1,P3] in the case when both elements of the graph join have at least three vertices.If one element has at most two vertices,then we give several necessary/sufficient conditions for the bigger element.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第11期1867-1876,共10页 数学学报(英文版)
基金 Supported by the Agency of Slovak Ministry of Education for the Structural Funds of the EU under project ITMS:26220120007 by Science and Technology Assistance Agency under the contract No.APVV-0023-10 by Slovak VEGA grant No.1/0652/12
关键词 1-Planar graph join product 1-Planar graph join product
  • 相关文献

参考文献18

  • 1Auer, C., Bachmaier, C., Brandenburg, F. J., et al.: The density of classes of 1-planar graphs. Graph Drawing, LNCS, 8242, 524-525 (2013).
  • 2Behzad, M., Mahmoodian, S. E.: On topological invariants of products of graphs. Canad. Math. Bull., 12,157-166 (1969).
  • 3Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, CRC Press, Boca Raton, 2010.
  • 4Czap, J., Hudák, D.: 1-planarity of complete multipartite graphs. Discrete Appl. Math., 160, 505-512(2012).
  • 5Diestel, R.: Graph Theory, Springer, New York, 2010.
  • 6Eggleton, R. B.: Rectilinear drawings of graphs. Util. Math., 29, 149-172 (1986).
  • 7Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Math., 307, 854-865 (2007).
  • 8Hong, S.-H., Eades, P., Liotta G., et al.: Fáry's theorem for 1-planar graphs. Comput. Combinat., LNCS,7434, 335-346 (2012).
  • 9Kleitman, D. J.: The crossing number of K5,n. J. Combin. Theory, 9, 315-323 (1970).
  • 10Kle??, M.: The crossing numbers of join of the special graph on six vertices with path and cycle. Discrete.Math.,310,1475—1481(2010).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部