期刊文献+

变形超立方体的圈和路嵌入(英文) 被引量:1

Cycles and paths embedded in varietal hypercubes
下载PDF
导出
摘要 作为超立方体网络Qn的变形,n维变形超立方体VQn具有许多优于超立方体所具有的性质.这里证明了对任何整数l∈[4,2n],VQn中每条边被包含在长度为l的圈中除非l=5;对任何顶点对(x,y)和整数l∈[d,2n-1],其中,d为这两点之间的距离,VQn中存在长度为l的xy路除非当d=1时l=2,4. The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices .It was proved that every edge of VQn is contained in cycles of every length from 4 to 2 n except 5 ,and that every pair of vertices with distance d is connected by paths of every length from d to 2 n - 1 except 2 and 4 if d = 1 .
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第9期732-737,741,共7页 JUSTC
基金 Supported by NNSF of China(61272008)
关键词 图论 变形超立方体 泛圈性 泛连通性 graphs cycle path varietal hypercube pancyclicity panconnectivity
  • 相关文献

参考文献1

二级参考文献18

  • 1Xu Jun ming. Theory and Application of Graphs[M]. Dordrecht/Boston/London: Kluwer Academic Publishers, 2003.
  • 2Bauer D, Boesch F, Suffel C, et al. Connectivity extremal problems and the design of reliable probabilistic networks[C]//The Theory and Application of Graphs. New York: Wiley, 1981:89-98.
  • 3Esfahanian A H. Generalized measures of fault tolerance with application to n-cube networks [J]. IEEE Trans Comput, 1989,38(11) : 1 586-1 591.
  • 4Esfahanian A H, Hakimi S L. On computing a conditional edge-connectivity of a graph [J].Information Processing Letters, 1988, 27: 195- 199.
  • 5Balbuena C, Garcia-Vazquez R, Marcote X. Sufficient conditions for λ'-optimality in graphs with girth g[J].J Graph Theory, 2006, 52(1): 73 86.
  • 6Bonsma P, Ueffing N, Volkmann I: Edge-cuts leaving components of order at least three [J]. Discrete Mathematics, 2002, 256(1 -2):431-439.
  • 7Hellwig A, Volkmann L. Sufficient conditions for λ'- optimality in graphs of diameter 2 [J]. Discrete Mathematics, 2004, 283(1- 3): 113-120.
  • 8Lu Min, Chen Guo-liang, Xu Jun-ming. On super edge-connectivity of Cartesian product graphs[J]. Networks, 2007, 49(2): 135-157.
  • 9Meng J X. Optimally super-edge-connected transitive graphs[J]. Discrete Mathematics, 2003, 260 (1-3) : 239 -248.
  • 10Meng J X, Ji Y H. On a kind of restricted edge connectivity of graphs [J]. Discrete Applied Mathematics, 2002, 117: 183-193.

共引文献2

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部