期刊文献+

基于噪声缩放的自适应UKF-SLAM算法 被引量:5

Adaptive UKF-SLAM Algorithm Based on Noise Scaling
下载PDF
导出
摘要 针对扩展卡尔曼滤波(EKF)算法在移动机器人同时定位和环境建模(SLAM)中的缺点,即非线性系统简单线性化所导致的系统状态方程的不准确性、雅克比矩阵的计算所导致的计算复杂化以及噪声模型不确定性所导致的滤波稳定性降低等问题,提出一种对噪声自适应的UKF-SLAM算法。该算法通过对噪声缩放进而改变噪声模型,利用观测残差序列准确估计观测噪声模型协方差,运用预测的新息协方差和IAE开窗法求其系统状态噪声缩放因子,从而准确估计系统状态噪声模型协方差,实现对不确定的噪声模型能够自适应UKF-SLAM算法。UKF的Sigma点采样策略是比例对称采样。实验结果证明,该方法相对EKF算法和UKF算法具有较高的定位精度和自适应能力。 For Extend Kalman Filtering ( EKF ) algorithm disadvantage on the Simultaneous Location and Mapping ( SLAM) ,that is simple linearization of nonlinear systems resulting from the inaccuracy of the system state equation,Jacobi matrix calculation resulting from computational complexity,and noise uncertainty caused by the filtering reduced stability and other issues, this paper proposes a noise adaptive UKF-SLAM algorithm. In order to achieve adaptive UKF-SLAM algorithm,the paper scales the noise to change the noise model. Using the observed innovation sequence to accurately estimate the covariance of the measurement noise model. And using a new message convariance and IAE fenestration to find the system noise scaling factor,and thus accurately setimates the convariance of the system state noise model,it achieves a adaptive UKF-SLAM algorithm. The sampling strategy of UKF Sigma points is scaling symmetric sampling. Experimental results show that the algorithm has a high accuracy on SLAM compared with the EKF-SLAM and UKF-SLAM.
出处 《计算机工程》 CAS CSCD 2014年第10期143-149,154,共8页 Computer Engineering
基金 国家自然科学基金资助项目(61262013) 江西省教育厅科技计划基金资助项目(GJ11133)
关键词 同时定位和环境建模 无迹卡尔曼滤波 噪声缩放 在线自适应 比例对称采样 开窗法 Simultaneous Location and Mapping(SLAM) Unscented Kalman Filtering(UKF) noise scaling onlineadaptive scale symmetric sampling windowing method
  • 相关文献

参考文献15

  • 1Durrant-Whyte H,Bailey T.Simultaneous Localization and Mapping:Part I[J].IEEE Robotics and Automation Magazine,2006,13(2):99-108.
  • 2Dissanayake M W M G,Newman P,Clark S,et al.A Solution to the Simultaneous Localization and Mapbuilding(SLAM)Problem[J].Transactions of Robotics and Automation,2001,17(3):229-241.
  • 3Singh S.Noise Impact on Time-series Forecasting Using an Intelligent Pattern Matching Technique[J].Pattern Recognition,1999,32(8):1389-1398.
  • 4Andrade-Cetto J,Vidal-Calleja T,Sanfeliu A.Unscented Transfor mation of Vehicle States in Slam[C] //Proceedings of IEEE International Conference on Robotics and Automation.Barcelona,Spain:[s.n.] ,2005:324-329.
  • 5Juliter S J.The Spherical Simplex Unscented Transformation[C] //Proceedings of American Control Conference.Denver,USA:[s.n.] ,2003:2430-2434.
  • 6Wan E A,vander Merwe R.The Unscented Kalman Filter,in Kalman Filtering and Neural Networks[EB/OL].(2004-03-10).http://www.cse.ogi.edu/PacSoft/projects/sec/wan01b.ps.
  • 7康轶非,宋永端,宋宇,闫德立,李丹勇.平方根容积卡尔曼滤波在移动机器人SLAM中的应用[J].机器人,2013,35(2):186-193. 被引量:17
  • 8张国良,汤文俊,敬斌,程展欣.基于线段特征匹配的EKF-SLAM算法[J].控制工程,2012,19(6):1019-1024. 被引量:10
  • 9Wang X,Zhang H.A UPF-UKF Framework for SLAM[C] //Proceedings of IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2007:1664-1669.
  • 10Kim C,Sakthivel R,Chung W K.Unscented Fast SLAM:A Robust and Efficient Solution to the SLAM Problem[J].IEEE Transactions on Robotics,2008,24(4):808-820.

二级参考文献22

  • 1陈杨钟,刘士荣,俞金寿.基于非线性滤波的移动机器人位姿估计[J].华东理工大学学报(自然科学版),2007,33(4):558-563. 被引量:1
  • 2Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping (SLAM) : Part I [ J ]. IEEE Robotics and Automation Magazine, 2006,13(2) :99-110.
  • 3Durrant-Whyte H, Rye D, Nebot E. Localization of autonomous guided vehicles[ M ]. New York : Spfinger-Verlag, 1995:613-625.
  • 4Smith R C,Self M,Cheeseman P. Estimating uncertain spatial rela-tionships in robotics [ M ]. New York, Springer-Verlag, 1990.
  • 5Guivant J E,Nebot E M. Optimization of the simultaneous localiza-tion and map-building algorithm for real-time implementation[ J].IEEE Trans on Robotics and Automation,2001,17(3) :242-257.
  • 6Guivant J,Nebot E. Compressed filter for realtime implementationof simultaneous localization and map building [ C ]. Int Conf onField and Service Robots. 2001 :309-314.
  • 7Siadat A,Kaske A,Klausmann S,et al. An optimized segmentationmethod for a 2d laserscanner applied to mobile robot navigation[C].3rd IFAC Symp on Intelligent Components and Instrumentsfor Control Applications. 1997 : 153-158.
  • 8Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108.
  • 9Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Re-search, 1986, 5(4): 56-68.
  • 10Konolige K, Agrawal M. FrameSLAM: From bundle adjust- ment to real-time visual mapping[J]. IEEE Transactions on Robotics, 2008, 24(5): 1066-1077.

共引文献25

同被引文献56

  • 1郭少锋,李安,李山山,冯钟葵.基于卡尔曼滤波的Landsat-8卫星影像几何精校正[J].遥感信息,2015,30(1):14-21. 被引量:1
  • 2王利,李亚红,刘万林.卡尔曼滤波在大坝动态变形监测数据处理中的应用[J].西安科技大学学报,2006,26(3):353-357. 被引量:49
  • 3张正勇,梅顺良.无线传感器网络节点自定位技术[J].计算机工程,2007,33(17):4-6. 被引量:10
  • 4王俊.卡尔曼预测在自动跟踪云台中的应用[D].西安:西安工业大学,2006.
  • 5AkyildizIF, Su W, Sankarasubramaniam Y, et al. Wireless Sensor Networks: A Survey I J 1. Computer Networks, 2002,38 ( 4 ) : 393-422.
  • 6周彦,李建勋,王冬丽.无线传感器网络目标跟踪综述[J].传感器与微系统,2011,30(s1):9-14.
  • 7Yick J,Mukherjee B, Ghosal D. Wireless Sensor Network Survey E J 1. Computer Networks, 2008,52 ( 12 ) :2292-2330.
  • 8Teng Jing,Snoussi H, Richard C, et al. Distributed Varia- tional Filtering for Simultaneous Sensor Localization and Target Tracking in Wireless Sensor Networks [ J ]. IEEE Transactions on Vehicular Technology, 2012, 61 ( 5 ) : 2305 -2318.
  • 9Taylor C, Shrobe H. Simultaneous Localization, Cali- bration,and Tracking in an Ad Hoc Sensor Network[C]// Proceedings of International Conference on Information Processing in Sensor Networks. Washington D. C., USA: IEEE Press ,2006:27-33.
  • 10Jajamovich G H, Wang Xiaodong. Joint Multitarget Tracking and Sensor Localization in Collaborative Sensor Networks [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2011,47 ( 4 ) : 2361-2375.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部